- -

CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes

Show full item record

Sánchez-Rivera, M.; Giner-Sanz, JJ.; Pérez-Herranz, V.; Mestre, S. (2019). CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology. 16(3):1274-1285. https://doi.org/10.1111/ijac.13149

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142040

Files in this item

Item Metadata

Title: CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes
Author: Sánchez-Rivera, M.J. Giner-Sanz, Juan José Pérez-Herranz, Valentín Mestre, S.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Antimony¿doped tin oxide electrodes with CuO as sintering aid are presented as an economical alternative to metal¿based electrodes, intended for the electrooxidation process of emerging and recalcitrant organic ...[+]
Subjects: Electrical conductivity , Electrodes , Oxidation process , Sintering
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Applied Ceramic Technology. (issn: 1546-542X )
DOI: 10.1111/ijac.13149
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/ijac.13149
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
Thanks:
The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support.
Type: Artículo

References

Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d

Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159-175. doi:10.1016/j.chemosphere.2018.05.026

Trellu, C., Coetsier, C., Rouch, J.-C., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water Research, 131, 310-319. doi:10.1016/j.watres.2017.12.070 [+]
Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d

Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159-175. doi:10.1016/j.chemosphere.2018.05.026

Trellu, C., Coetsier, C., Rouch, J.-C., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water Research, 131, 310-319. doi:10.1016/j.watres.2017.12.070

Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h

Kent, C. A., Concepcion, J. J., Dares, C. J., Torelli, D. A., Rieth, A. J., Miller, A. S., … Meyer, T. J. (2013). Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes. Journal of the American Chemical Society, 135(23), 8432-8435. doi:10.1021/ja400616a

Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M., & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry, 668, 1-6. doi:10.1016/j.jelechem.2011.12.022

Frasca, S., Molero Milan, A., Guiet, A., Goebel, C., Pérez-Caballero, F., Stiba, K., … Wollenberger, U. (2013). Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes—Electrochemical characterization and direct enzyme communication. Electrochimica Acta, 110, 172-180. doi:10.1016/j.electacta.2013.03.144

Evans, C. J. (1998). Industrial uses of tin chemicals. Chemistry of Tin, 442-479. doi:10.1007/978-94-011-4938-9_12

Molera, J., Pradell, T., Salvadó, N., & Vendrell-Saz, M. (2004). Evidence of Tin Oxide Recrystallization in Opacified Lead Glazes. Journal of the American Ceramic Society, 82(10), 2871-2875. doi:10.1111/j.1151-2916.1999.tb02170.x

Tsai, P. P., Chen, I.-C., & Tzeng, M. H. (1995). Tin oxide (SnOX) carbon monoxide sensor fabricated by thick-film methods. Sensors and Actuators B: Chemical, 25(1-3), 537-539. doi:10.1016/0925-4005(95)85116-x

Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z., & Xin, X. (2002). One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 81(2-3), 165-169. doi:10.1016/s0925-4005(01)00947-9

Zuca, S., Terzi, M., Zaharescu, M., & Matiasovsky, K. (1991). Contribution to the study of SnO2-based ceramics. Journal of Materials Science, 26(6), 1673-1676. doi:10.1007/bf00544681

Batzill, M., & Diebold, U. (2005). The surface and materials science of tin oxide. Progress in Surface Science, 79(2-4), 47-154. doi:10.1016/j.progsurf.2005.09.002

Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178

Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8

Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x

Lin, Y.-J., & Wu, C.-J. (1997). The properties of antimony-doped tin oxide thin films from the sol-gel process. Surface and Coatings Technology, 88(1-3), 239-247. doi:10.1016/s0257-8972(96)02926-x

Maria Garcia dos Santos, I., Longo, E., Arana Varela, J., & Roberto Leite, E. (2000). Sintering of tin oxide processed by slip casting. Journal of the European Ceramic Society, 20(14-15), 2407-2413. doi:10.1016/s0955-2219(00)00130-8

Krishnakumar, T., Jayaprakash, R., Pinna, N., Phani, A. R., Passacantando, M., & Santucci, S. (2009). Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 70(6), 993-999. doi:10.1016/j.jpcs.2009.05.013

Medvedovski, E. (2017). Tin oxide-based ceramics of high density obtained by pressureless sintering. Ceramics International, 43(11), 8396-8405. doi:10.1016/j.ceramint.2017.03.185

Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x

Foschini, C. R., Perazolli, L., & Varela, J. A. (2004). Sintering of tin oxide using zinc oxide as a densification aid. Journal of Materials Science, 39(18), 5825-5830. doi:10.1023/b:jmsc.0000040095.03906.61

Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4

Popescu, A.-M., Mihaiu, S., & Zuca, S. (2002). Microstructure and Electrochemical Behaviour of some SnO2-based Inert Electrodes in Aluminium Electrolysis. Zeitschrift für Naturforschung A, 57(1-2), 71-75. doi:10.1515/zna-2002-1-210

Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062

Castro, M. S., & Aldao, C. M. (1998). Characterization of SnO2-varistors with different additives. Journal of the European Ceramic Society, 18(14), 2233-2239. doi:10.1016/s0955-2219(97)00130-1

Sahar, M. R., & Hasbullah, M. (1995). Properties of SnO2-based ceramics. Journal of Materials Science, 30(20), 5304-5306. doi:10.1007/bf00356085

Nisiro, D., Fabbri, G., Celotti, G. C., & Bellosi, A. (2003). Journal of Materials Science, 38(12), 2727-2742. doi:10.1023/a:1024459307992

RM German Sintering theory and practice 1996 John Wiley & Sons Inc New York NY 11 2

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066

Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093

Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943

Stan, M., Mihaiu, S., Crisan, D., & Zaharescu, M. (1998). Subsolidus phase equilibrium in the Cu-Sb-O system. European Journal of Solid State and Inorganic Chemistry, 35(3), 243-254. doi:10.1016/s0992-4361(98)80005-2

Lalande, J., Ollitrault-Fichet, R., & Boch, P. (2000). Sintering behaviour of CuO-doped SnO2. Journal of the European Ceramic Society, 20(14-15), 2415-2420. doi:10.1016/s0955-2219(00)00153-9

Zhang, T. S., Kong, L. B., Song, X. C., Du, Z. H., Xu, W. Q., & Li, S. (2014). Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2: A comparative study. Acta Materialia, 62, 81-88. doi:10.1016/j.actamat.2013.09.031

García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jes

Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x

Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098

K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823

Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1

Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f

Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141

BROSSARD, L., & MARQUIS, B. (1994). Electrocatalytic behavior of Co/Cu electrodeposits in 1M KOH at 30°C. International Journal of Hydrogen Energy, 19(3), 231-237. doi:10.1016/0360-3199(94)90091-4

Jaksic, J. M., Ristic, N. M., Krstajic, N. V., & Jaksic, M. M. (1998). Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals. International Journal of Hydrogen Energy, 23(12), 1121-1156. doi:10.1016/s0360-3199(98)00014-7

Fazle Kibria, A. (2002). Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER). International Journal of Hydrogen Energy, 27(9), 879-884. doi:10.1016/s0360-3199(01)00185-9

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record