- -

Investigación del flujo y transporte mediante experimentación a escala intermedia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Investigación del flujo y transporte mediante experimentación a escala intermedia

Mostrar el registro completo del ítem

Sanchez Fuster, I.; López Chacón, L.; Capilla Romá, JE. (2008). Investigación del flujo y transporte mediante experimentación a escala intermedia. Ingeniería del agua. 15(3):147-162. https://doi.org/10.4995/ia.2008.2932

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142242

Ficheros en el ítem

Metadatos del ítem

Título: Investigación del flujo y transporte mediante experimentación a escala intermedia
Autor: Sanchez Fuster, Israel López Chacón, Luís Capilla Romá, José Esteban
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[ES] Los experimentos en medio poroso heterogéneo llevados a cabo en tanque de laboratorio se han utilizado con frecuencia como herramienta para la formulación y la validación de aproximaciones a la modelación de diversos ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2008.2932
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2008.2932
Código del Proyecto:
info:eu-repo/grantAgreement/MICYT//REN2003-06989/ES/Modelación de parámetros de flujo y transporte en medios porosos basada en un tanque experimental de laboratorio/
Agradecimientos:
El presente artículo fue realizado en el marco de la Convocatoria de ayudas de Proyectos de Investigación Científica y Desarrollo Tecnológico de 2003, del Ministerio de Educación y Ciencia, con la referencia Proyecto ...[+]
Tipo: Artículo

References

Aeby P., Schultze U., Braichotte D., Bundt M., Moser-Boroumand F., Wydler H. y Flühler H., (2001). Fluorescence imaging of tracer distribution in soil profiles. Environ. Sci. Technol. 35 (4), 753-760.

Barth G., Illangasekare T., Hill M. C. y Rajaram H., (2001). A new tracer-density criterion for heterogeneous porous media. Water Resources Research, 37(1), 21-31.

Barth G., Hill M., Illangasekare T. y Rajaram H., (2001). Predictive modelling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous medium. Water Resources Research, 37(10), 2503-2512. [+]
Aeby P., Schultze U., Braichotte D., Bundt M., Moser-Boroumand F., Wydler H. y Flühler H., (2001). Fluorescence imaging of tracer distribution in soil profiles. Environ. Sci. Technol. 35 (4), 753-760.

Barth G., Illangasekare T., Hill M. C. y Rajaram H., (2001). A new tracer-density criterion for heterogeneous porous media. Water Resources Research, 37(1), 21-31.

Barth G., Hill M., Illangasekare T. y Rajaram H., (2001). Predictive modelling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous medium. Water Resources Research, 37(10), 2503-2512.

Cápiro, N.L.et al., (2007). Fuel-grade etanol transport and impacts to groundwater in a pilot-scale aquifer tank. Water Resources Research, 41, 656-664.

Catania, F., Massabò, M., Valle, M., Bracco, G. y Paladino, O., (2008). Assessment of quantitative imaging of contaminant distributions in porous media. Experiments in Fluids, 44(1), 166-177.

Chao H., Rajaram H. y Illangasekare T., (2000). Intermediate-scale experiments and numerical simulations of transport under radial flow in a tow-dimensional heterogeneous porous medium. Water Resources Research, 36(10), 2869-2884.

Christ, J.A. y Abriola, L.M., (2006). Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Advances in Water Resources, 30, 1547-1561.

Conwell et al., (1997). Design of a piezometer network for estimation of the variogram of the hydraulic gradient: The role of the instrument. Water Resources Research, 33(11), 2489-2494.

Dagan, G., (1984). Solute transport in heterogeneous porous formations. Journal of Fluid Mechanics, 145, 151-177.

Dagan, G. y Fiori, A., (1997). The influence of pore-scale dispersion on concentration statistical moments in transport through heterogeneous aquifers. Water Resources Research, 33, 1595-1606.

Daily W. y Owen E., (1991). Cross-borehole resistivity tomography. Geophysics, 56, 1228-1235.

Darcy, H., (1856). Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris.

Dunn, A.M. y Silliman S.E., (2003). Air and water entrapment in the vicinity of the water table. Groundwater, 41(6), 729-734.

Elsner, M.M., (1994). Laboratory investigation of dispersion of dense, viscous, miscible fluids in one-dimensional, correlated, random porous media. Thesis, Drexel University, 182 pp.

Fernández-García, D., Illangasekare, T.H. y Rajaram, H., (2004). Conservative and sorptive forced-gradient and uniform flow tracer tests in a three-dimensional laboratory test aquifer. Water Resources Research, 40(10) W10103, doi:10.1029/2004WR003112.

Forrer I. y Papritz, A., (2000). Quantifying dye tracers in soil proFIles by image processing. European Journal of Soil Science, 51, 313-322

Frippiat, C., Servais, T., Conde, P., Talbaoui, M. y Holeyman, A., (2003). Medium-scale laboratory model to assess soil contaminant dispersivity. 13th European Conference on Soil Mechanics and Geotechnical Engineering, August 25-28, Praha, Czech Republic.

Gimmi T. y Ursino N., (2004). Mapping Material Distribution in a Heterogeneous Sand Tank by Image Analysis. Soil Science Society of America Journal, 68, 1508-1514.

Glass, R.J. y Steenhuis T.S. y Parlange J.-Y., (1988). Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone. J. Cont. Hydrology, 3, 207-226.

Gramling, C., Meigs, L. y Harvey, C.F., (2002). Reactive transport in porous media: a comparison of modelprediction with laboratory visualization. Environ. Science Technology, 23, 2508-2514.

Huang, K., Torida, N. y Van Genuchten, M.Th., (1995). Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transport Porous Media, 18, 283-302.

Irwin, N.C., Botz, M.M. y Greenkorn, R.A., (1996). Experimental investigation of characteristic length scales in periodic heterogeneous porous media. Transport Porous Media, 25, 235-246.

Jalbert, M., Dane, J. y Bahaminykamwe, L., (2003). Influence of porous medium and NAPL distribution heterogeneities on partitioning inter-well tracer tests: a laboratory investigation. Journal of Hydrology, 272, 79-94.

Levy, M. y Berkowitz, B., (2003). Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. Journal of Contaminant Hydrology, 64, 203-226.

Liu, S., Yeh, T.-C.J. y Gardiner, R., (2002). Effectiveness of hydraulic tomography: Sandbox experiments. Water Resources Research, 38(4), 1034, doi:10.1029/2001WR000338.

Massabò, M. y Catania, F. y Paladino, O., (2007). A New Method for Laboratory Estimation of the Transverse Dispersion Coefficient. Groundwater, 45(3), 339-347.

McNeil, J.D., Oldenborger, G.A. y Schincariol, R.A., (2006). Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. Journal of Contaminant Hydrology, 84, 36-54.

Neuman, S.P. y Zhang Y.K., (1990). A quasi-linear theory of non-FIckian and Fickian subsurface dispersion. 1. Theoretical analysis with application to isotropic media. Water Resour. Res., 26, 887-902.

Nicholl, M.J., Glass, R.J. y Nguyen, H.A., (1992). Gravity-driven FIngering in unsaturated fractures. Proc Third Annual Int Conf on High Level Radioactive Waste Management, Las Vegas, Nevada.

Oates, P., Castenson, C., Harvey, C.F. y Polz, M., (2005). Illuminating reactive microbial transport in saturated porous media: Demonstration of a visualization method and conceptual transport model. Journal of Contaminant Hydrology, 77, 233-245.

Oostrom, M., Hofstee, C., Walker, R. y Dane, J., (1999). Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium. Journal of Contaminant Hydrology, 37, 159-178.

Persson, M., (2005). Accurate dye tracer concentration estimations using image analysis. Soil Science Society of America Journal, 69 967-975.

Rashidi, M., Peurrung, L., Tompson, A.F.B. y Kulp, T.J., (1996). Experimental analysis of pore-scale flow and transport in porous media. Advances in Water Resources, 19, 163-180.

Rovey, C.M. y Niemann, W.L., (2005). Do Conservative Solutes Migrate at Average Pore-Water Velocity?. Groundwater, 43(1), 52-62.

Sánchez Fuster, I. y Capilla Romá, J.E., (2007). Desarrollo de un modelo físico de laboratorio de escala intermedia (ISE). Trabajo de investigación, Dpto. de Ing. Hidráulica y MMAA , Univ. Politécnica de Valencia, http://ttt.upv.es/issanfus/home.html.

Scheidegger, A.E., (1957). On the theory of flow of miscible phases in porous media. Proce. IUGG General Assembly, Toronto 2, 236-242.

Schincariol, R.A. y Schwartz, F.W., (1990). An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resources Research, 26, 2317-2329.

Silliman, S.E. y Simpson, E.S., (1987). Laboratory evidence of the scale eFFect in solute transport. Water Resources Research, 23(8), 1667-1673.

Silliman, S.E. y Frost, C., (1998). Monitoring Hydraulic Gradient Using Three-Point Estimator. J. Environmental Engineering, 124(6), 517-523.

Silliman, S.E. y Zheng, L., (1999). Comparison of observations from a laboratory model with stochastic theory: Initial analysis of hydraulic and tracer experiments. Transport in Porous Media, 42(1-2), 85-107.

Silliman S.E., Zheng, L. y Conwell, P., (1997). The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media. Hydrogeology Journal, 6(1), 166-177.

Silliman S.E., (1996). The importance of the third dimension on transport through saturated porous media: case study based on transport of particles. Journal of Hydrology, 179, 181-195.

Skibitzke, H.E. y Robinson, G.M., (1963). Dispersion in ground water flowing through heterogeneous materials. U.S. Geol. Surv. Prof. Pap., 386(B), 1-3.

Smith, L. y Schwartz, F., (1980). Mass transport. 1. A stochastic analysis of macroscopic dispersion. Water Resources Research, 16, 303-313.

Sternberg, S.P.K., Cushman, J.H. y Greenkorn, R.A., (1996). Laboratory observation of non-local dispersion. Transport Porous Media, 23, 135-151.

Sun, N., Elimelech, M., Sun, N.Z. y Ryan, J., (2001). A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 49, 173-199.

Szecsody, J.E., Zachara, J.M. y Bruckhart, P.L., (1994a). Adsorption-dissolution reactions aFFecting the distribution and stability of COIIEDTA in iron oxide-coated sand, Env. Sci. and Tech., 28, 1706-1716.

Tompson, A.F.B. y Ababou, R., (1989). Implementation of the three-dimensional turning bands random FIeld generator. Water Resources Research, 25(10), 2227-2243.

Thullner, M., Mauclaire, L., Schroth, M., Kinzelbach, W. y Zeyer, J., (2002). Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow FIeld in saturated porous media. Journal of Contaminant Hydrology, 58, (2), 169-189.

Ursino, N., Gimmi, T. y Flühler, H., (2001). Dilution of non-reactive tracers in variably saturated sandy structures. Adv. in Water Resources, 24, 877-885.

Van Genuchten, M.Th. y Wierenga, P.J., (1976). Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Science Society of America Journal, 40(4), 473-480.

Welty, C.M. y Gelhar, L.W., (1991). Stochastic analysis of the eFFects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media. Water Resources Research, 27, 2061-2075.

Welty, C. y Gelhar, L.W., (1992). Simulation of large-scale transport of variable density and viscosity fluids using a stochastic mean model. Water Resources Research, 28, 815-827.

Welty, C. y Elsner, M., (1997). Constructing correlated random FIelds in the laboratory for observations of fluid flow and mass transport. J. of Hydrology, 202, 192-211.

Workman S. y Serrano S., (2005). Testing facility for evaluating groundwater storage and transport characteristics. Proyecto para la Universidad de Kentucky: http://www.bae.uky.edu/sb271/2000/proposals/00ppworkman.pdf.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem