- -

Modelo híbrido para la simulación numérica de la fase de avance del riego por superficie

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelo híbrido para la simulación numérica de la fase de avance del riego por superficie

Mostrar el registro completo del ítem

Rodríguez, JA. (2009). Modelo híbrido para la simulación numérica de la fase de avance del riego por superficie. Ingeniería del agua. 16(3):217-233. https://doi.org/10.4995/ia.2009.2955

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142411

Ficheros en el ítem

Metadatos del ítem

Título: Modelo híbrido para la simulación numérica de la fase de avance del riego por superficie
Autor: Rodríguez, José Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[ES] Se presenta un modelo híbrido que combina una solución convencional de balance de volumen con cuatro redes neuronales artificiales de tipo Perceptrón Multicapa para simular la fase de avance del riego por superficie. ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2009.2955
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2009.2955
Tipo: Artículo

References

Al-Azba, A.A., (1999). Explicit volume balance model solution. Journal of Irrigation and Drainage Engineering, ASCE, 125(5), 273-279.

Bassett, D.L., Frangmeier, D.D. y Strelkoff, T., (1980). Hydraulics of surface irrigation systems. En: Design and operation of farm irrigation systems. ASAE Monograph No.3, St. Joseph, Michigan, 829 pp.

Bautista, E., Clemmens, A.J., Strelkoff, T. y Schlegel, J.L., (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96, 1146-1154. [+]
Al-Azba, A.A., (1999). Explicit volume balance model solution. Journal of Irrigation and Drainage Engineering, ASCE, 125(5), 273-279.

Bassett, D.L., Frangmeier, D.D. y Strelkoff, T., (1980). Hydraulics of surface irrigation systems. En: Design and operation of farm irrigation systems. ASAE Monograph No.3, St. Joseph, Michigan, 829 pp.

Bautista, E., Clemmens, A.J., Strelkoff, T. y Schlegel, J.L., (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96, 1146-1154.

Bishop, M., (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Brown, M.B. y Forsythe, A.B., (1974). Robust Tests for Equality of Variances. Journal of the American Statistical Association, 69: 364-367.

Dibike, Y.B., (2002). Developing generic hydrodynamic models using artificial neural networks. Journal of Hydraulic Research, 40(2), 183-190.

Gillies, M.H., Smith, R.J. y Raine, S.R., (2007). Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science, 25(2): 87-97.

Hagan, M.T. y Menhaj, M.B., (1994). Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Net., 5, 989-993.

Katopodes, N.D. y Strelkoff, T., (1977). Dimensionless solutions of border-irrigation advance. Journal of Irrigation and Drainage Engineering, ASCE, 103(4), 401-417.

Kleijnen, J.P., Bettonvil, B., y Van Groenendall, W., (1998). Validation of trace-driven simulation models: a novel regression test. Management Science, 44, 812-819.

Kolmogoroff, A.N., (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, 4, 83-91.

Kostiakov, A.N., (1932). On the dynamics of coefficient of water-percolation in soils and the necessity of studying it from a dynamic point of view for purposes of amelioration. Trans. Com. Int. Soc. Soil Sci. 6th, Mosc ́u, Part A, 267-272.

Mann, H.B. y Whitney, D.R., (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60.

Renault, D. y Wallender, W.W., (1996). Initial-inflow variation impacts on furrow irrigation evaluation. Journal of Irrigation and Drainage Engineering, ASCE, 122(1), 7-14.

Rodr ́ıguez, J.A. y Martos, J.C., (2009). SIPAR_ID: Freeware for surface irrigation parameter identification. Environ. Model. Softw. Art ́ıculo en imprenta.

Saint-Venant, A.J.C., (1871). Théorie du mouvement non permanent des eaux, avec application aux des rivères et a l'introduction des marées dans eut lits. Comptes rendus des séances de l'Académies Sciences, 73, 147-154.

Smirnov, N., (1933). Estimate of deviation between empirical distribution functions in two independent samples. Moscow University Mathematics Bulletin, 2, 3-16.

Smith, M., (1993). Neural networks for statistical modeling. Van Nostrand Reinhold, New York.

Tedeschi, L.O., (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89, 225-247.

Valiantzas, J.D., (1997a). Surface irrigation advance equation: Variation of subsurface shape factor. Journal of Irrigation and Drainage Engineering, ASCE, 123(4), 300-306.

Valiantzas, J.D., (1997b). Volume balance irrigation advance equation: Variation of surface shape factor. Journal of Irrigation and Drainage Engineering, ASCE, 123(4), 307-312.

Valiantzas, J.D., (1999). Explicit time of advance formula for furrow design. Journal of Irrigation and Drainage Engineering, ASCE, 125(1), 19-25.

Walker, W.R., (1989). Guidelines for designing and evaluating surface irrigation system. FAO Irrigation and Drainage Paper No. 45, Rome, 137pp.

Walker, W.R. y Skogerboe, G.V., (1987). Surface irrigation: Theory and Practice. Prentice-Hall, Englewood Cliffs, New Jersey, 386pp.

Wilcoxon, F., (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1, 80-83.

Wolpert, D.H., (1996a). The lack of a priori distinctions between learning algorithms. Neural Computation, 8, 1341-1390.

Wolpert, D.H., (1996b). The existence of a priori distinctions between learning algorithms. Neural Computation, 8, 1391-1420.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem