- -

SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana

Mostrar el registro completo del ítem

Gras, D.; Vidal, E.; Undurraga, S.; Riveras, E.; Moreno, S.; Dominguez-Figueroa, J.; Alabadí Diego, D.... (2018). SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. Journal of Experimental Botany. 69(3):619-631. https://doi.org/10.1093/jxb/erx423

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142506

Ficheros en el ítem

Metadatos del ítem

Título: SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana
Autor: Gras, D. Vidal, E. Undurraga, S. Riveras, E. Moreno, S. Dominguez-Figueroa, J. Alabadí Diego, David Blazquez Rodriguez, Miguel Angel Medina, Joaquín Gutierrez, R.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely ...[+]
Palabras clave: Developmental transition , Flowering , Gibberellic acid , Mineral nutrition , Nitrate , Nitrate transporter 1.1 , Schlafmutze , Schnarchzapfen
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/erx423
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/jxb/erx423
Código del Proyecto:
info:eu-repo/grantAgreement/Generalitat de Catalunya//15090007/
...[+]
info:eu-repo/grantAgreement/Generalitat de Catalunya//15090007/
info:eu-repo/grantAgreement/FONDECYT//1141097/
info:eu-repo/grantAgreement/FONDECYT//11110083/
info:eu-repo/grantAgreement/FONDECYT//11121225/
info:eu-repo/grantAgreement/MINECO//RTA2015-00014-C02-01/
info:eu-repo/grantAgreement/UC//PUC1566/
info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./
[-]
Agradecimientos:
We are grateful to Dr Claus Schwechheimer (Technische Universitat Munchen, Germany) for providing 35S::GNC, 35S::GNL, and gnc-gnl seeds. This work was supported by grants from the Howard Hughes Medical Institute, Fondo de ...[+]
Tipo: Artículo

References

Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642

Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031

ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x [+]
Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642

Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031

ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x

Alexandre, C. M., & Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany, 59(6), 1127-1135. doi:10.1093/jxb/ern070

Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-López, O., Tamayo, K. P., … Gutiérrez, R. A. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response ofArabidopsis thalianaroots. The Plant Journal, 80(1), 1-13. doi:10.1111/tpj.12618

Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x

Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291

Andrews, M., Raven, J. A., & Lea, P. J. (2013). Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 163(2), 174-199. doi:10.1111/aab.12045

Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238

Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 175-219. doi:10.1146/annurev.pp.39.060188.001135

Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological Signals That Induce Flowering. The Plant Cell, 5(10), 1147. doi:10.2307/3869768

Bi, Y.-M., Wang, R.-L., Zhu, T., & Rothstein, S. J. (2007). Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics, 8(1), 281. doi:10.1186/1471-2164-8-281

Bouguyon, E., Brun, F., Meynard, D., Kubeš, M., Pervent, M., Leran, S., … Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, 1(3). doi:10.1038/nplants.2015.15

Canales, J., Moyano, T. C., Villarroel, E., & Gutiérrez, R. A. (2014). Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00022

Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 142(2), 509-525. doi:10.1104/pp.106.082289

Cao, D., Hussain, A., Cheng, H., & Peng, J. (2005). Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta, 223(1), 105-113. doi:10.1007/s00425-005-0057-3

Castro Marín, I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., & Osuna, D. (2010). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233(3), 539-552. doi:10.1007/s00425-010-1316-5

Chandler, J., & Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants ofArabidopsis thaliana(L.) Heynh. Journal of Experimental Botany, 45(9), 1279-1288. doi:10.1093/jxb/45.9.1279

Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., … Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 316(5827), 1030-1033. doi:10.1126/science.1141752

Crawford, N. M., & Glass, A. D. . (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389-395. doi:10.1016/s1360-1385(98)01311-9

De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520

DICKENS, C. W. S., & STADEN, J. V. (1988). TheIn VitroFlowering ofKalanchöe blossfeldianaPoellniz. Journal of Experimental Botany, 39(4), 461-471. doi:10.1093/jxb/39.4.461

Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448

Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: Control of Flowering in Arabidopsis. Cell, 141(3), 550-550.e2. doi:10.1016/j.cell.2010.04.024

Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175-1180. doi:10.1073/pnas.96.4.1175

Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003

Golembeski, G. S., & Imaizumi, T. (2015). Photoperiodic Regulation of Florigen Function inArabidopsis thaliana. The Arabidopsis Book, 13, e0178. doi:10.1199/tab.0178

Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., … Thomas, S. G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. doi:10.1105/tpc.106.047415

Guo, F.-Q., Wang, R., Chen, M., & Crawford, N. M. (2001). The Arabidopsis Dual-Affinity Nitrate Transporter Gene AtNRT1.1 (CHL1) Is Activated and Functions in Nascent Organ Development during Vegetative and Reproductive Growth. The Plant Cell, 13(8), 1761-1777. doi:10.1105/tpc.010126

Gutiérrez, R. A. (2012). Systems Biology for Enhanced Plant Nitrogen Nutrition. Science, 336(6089), 1673-1675. doi:10.1126/science.1217620

Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8

Ho, C.-H., Lin, S.-H., Hu, H.-C., & Tsay, Y.-F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138(6), 1184-1194. doi:10.1016/j.cell.2009.07.004

Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J., & Chen, X.-Y. (2012). Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24(6), 2635-2648. doi:10.1105/tpc.112.098749

Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024

Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001

IMAIZUMI, T., & KAY, S. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science, 11(11), 550-558. doi:10.1016/j.tplants.2006.09.004

Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., & Kay, S. A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426(6964), 302-306. doi:10.1038/nature02090

Jonassen, E. M., Sévin, D. C., & Lillo, C. (2009). The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. Journal of Plant Physiology, 166(18), 2071-2076. doi:10.1016/j.jplph.2009.05.010

Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell, 14(6), 787-799. doi:10.1016/j.molcel.2004.05.027

Kant, S., Peng, M., & Rothstein, S. J. (2011). Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis. PLoS Genetics, 7(3), e1002021. doi:10.1371/journal.pgen.1002021

Kim, S. Y., & Michaels, S. D. (2006). SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development, 133(23), 4699-4707. doi:10.1242/dev.02684

Kobayashi, Y. (1999). A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 286(5446), 1960-1962. doi:10.1126/science.286.5446.1960

Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 345-370. doi:10.1146/annurev.arplant.49.1.345

Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., & Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. The Plant Journal, 6(6), 911-919. doi:10.1046/j.1365-313x.1994.6060911.x

Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y.-F. (2010). Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265-272. doi:10.1016/j.pbi.2009.12.003

Lee, H. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14(18), 2366-2376. doi:10.1101/gad.813600

Lee, S., Kim, J., Han, J.-J., Han, M.-J., & An, G. (2004). Functional analyses of the flowering time geneOsMADS50, the putativeSUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice. The Plant Journal, 38(5), 754-764. doi:10.1111/j.1365-313x.2004.02082.x

Liu, K.-H., Huang, C.-Y., & Tsay, Y.-F. (1999). CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake. The Plant Cell, 11(5), 865-874. doi:10.1105/tpc.11.5.865

Liu, T., Li, Y., Ren, J., Qian, Y., Yang, X., Duan, W., & Hou, X. (2013). Nitrate or NaCl regulates floral induction in Arabidopsis thaliana. Biologia, 68(2). doi:10.2478/s11756-013-0004-x

Loeppky, H. A., & Coulman, B. E. (2001). Residue Removal and Nitrogen Fertilization Affects Tiller Development and Flowering in Meadow Bromegrass. Agronomy Journal, 93(4), 891-895. doi:10.2134/agronj2001.934891x

Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.x

Mateos, J. L., Bologna, N. G., Chorostecki, U., & Palatnik, J. F. (2010). Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology, 20(1), 49-54. doi:10.1016/j.cub.2009.10.072

Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009

Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F., & Schmid, M. (2009). Repression of Flowering by the miR172 Target SMZ. PLoS Biology, 7(7), e1000148. doi:10.1371/journal.pbio.1000148

Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology, 12(1), 75-80. doi:10.1016/j.pbi.2008.09.005

Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949

Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519

Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040

O’Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate Transport, Sensing, and Responses in Plants. Molecular Plant, 9(6), 837-856. doi:10.1016/j.molp.2016.05.004

Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1

Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164

Pouteau, S., & Albertini, C. (2009). The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany, 60(12), 3367-3377. doi:10.1093/jxb/erp173

Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238

Richter, R., Behringer, C., Muller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 24(18), 2093-2104. doi:10.1101/gad.594910

Richter, R., Behringer, C., Zourelidou, M., & Schwechheimer, C. (2013). Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 110(32), 13192-13197. doi:10.1073/pnas.1304250110

Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., … Hedden, P. (2007). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal, 53(3), 488-504. doi:10.1111/j.1365-313x.2007.03356.x

Riveras, E., Alvarez, J. M., Vidal, E. A., Oses, C., Vega, A., & Gutiérrez, R. A. (2015). The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant Physiology, 169(2), 1397-1404. doi:10.1104/pp.15.00961

Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041

Sawa, M., & Kay, S. A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(28), 11698-11703. doi:10.1073/pnas.1106771108

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019

Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018

Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546

Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7(5), 570-574. doi:10.1016/j.pbi.2004.07.002

Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-y

Stavang, J. A., Gallego-Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., … Blázquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal, 60(4), 589-601. doi:10.1111/j.1365-313x.2009.03983.x

Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138

Tal, I., Zhang, Y., Jørgensen, M. E., Pisanty, O., Barbosa, I. C. R., Zourelidou, M., … Shani, E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nature Communications, 7(1). doi:10.1038/ncomms11486

Dijken, A. J. H. van, Schluepmann, H., & Smeekens, S. C. M. (2004). Arabidopsis Trehalose-6-Phosphate Synthase 1 Is Essential for Normal Vegetative Growth and Transition to Flowering. Plant Physiology, 135(2), 969-977. doi:10.1104/pp.104.039743

Vidal, E. A., Moyano, T. C., Canales, J., & Gutierrez, R. A. (2014). Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 65(19), 5611-5618. doi:10.1093/jxb/eru326

Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., … Schmid, M. (2013). Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science, 339(6120), 704-707. doi:10.1126/science.1230406

Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723-4730. doi:10.1093/jxb/eru246

Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944

Wang, R., Xing, X., Wang, Y., Tran, A., & Crawford, N. M. (2009). A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1. Plant Physiology, 151(1), 472-478. doi:10.1104/pp.109.140434

Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiology, 100(1), 403-408. doi:10.1104/pp.100.1.403

Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031

Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010

Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., … He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109(19), E1192-E1200. doi:10.1073/pnas.1201616109

Yang, L., Xu, M., Koo, Y., He, J., & Poethig, R. S. (2013). Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2. doi:10.7554/elife.00260

Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., … Ahn, J. H. (2005). CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. doi:10.1104/pp.105.066928

Yu, S., Cao, L., Zhou, C.-M., Zhang, T.-Q., Lian, H., Sun, Y., … Wang, J.-W. (2013). Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2. doi:10.7554/elife.00269

Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014

Yuan, S., Zhang, Z.-W., Zheng, C., Zhao, Z.-Y., Wang, Y., Feng, L.-Y., … He, Y. (2016). Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences, 113(27), 7661-7666. doi:10.1073/pnas.1602004113

Zhang, H., Jennings, A., Barlow, P. W., & Forde, B. G. (1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 96(11), 6529-6534. doi:10.1073/pnas.96.11.6529

Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108

Zhu, Q.-H., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62(2), 487-495. doi:10.1093/jxb/erq295

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem