Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642
Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031
ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x
[+]
Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642
Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031
ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x
Alexandre, C. M., & Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany, 59(6), 1127-1135. doi:10.1093/jxb/ern070
Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-López, O., Tamayo, K. P., … Gutiérrez, R. A. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response ofArabidopsis thalianaroots. The Plant Journal, 80(1), 1-13. doi:10.1111/tpj.12618
Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x
Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291
Andrews, M., Raven, J. A., & Lea, P. J. (2013). Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 163(2), 174-199. doi:10.1111/aab.12045
Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238
Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 175-219. doi:10.1146/annurev.pp.39.060188.001135
Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological Signals That Induce Flowering. The Plant Cell, 5(10), 1147. doi:10.2307/3869768
Bi, Y.-M., Wang, R.-L., Zhu, T., & Rothstein, S. J. (2007). Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics, 8(1), 281. doi:10.1186/1471-2164-8-281
Bouguyon, E., Brun, F., Meynard, D., Kubeš, M., Pervent, M., Leran, S., … Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, 1(3). doi:10.1038/nplants.2015.15
Canales, J., Moyano, T. C., Villarroel, E., & Gutiérrez, R. A. (2014). Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00022
Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 142(2), 509-525. doi:10.1104/pp.106.082289
Cao, D., Hussain, A., Cheng, H., & Peng, J. (2005). Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta, 223(1), 105-113. doi:10.1007/s00425-005-0057-3
Castro Marín, I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., & Osuna, D. (2010). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233(3), 539-552. doi:10.1007/s00425-010-1316-5
Chandler, J., & Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants ofArabidopsis thaliana(L.) Heynh. Journal of Experimental Botany, 45(9), 1279-1288. doi:10.1093/jxb/45.9.1279
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., … Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 316(5827), 1030-1033. doi:10.1126/science.1141752
Crawford, N. M., & Glass, A. D. . (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389-395. doi:10.1016/s1360-1385(98)01311-9
De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520
DICKENS, C. W. S., & STADEN, J. V. (1988). TheIn VitroFlowering ofKalanchöe blossfeldianaPoellniz. Journal of Experimental Botany, 39(4), 461-471. doi:10.1093/jxb/39.4.461
Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: Control of Flowering in Arabidopsis. Cell, 141(3), 550-550.e2. doi:10.1016/j.cell.2010.04.024
Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175-1180. doi:10.1073/pnas.96.4.1175
Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003
Golembeski, G. S., & Imaizumi, T. (2015). Photoperiodic Regulation of Florigen Function inArabidopsis thaliana. The Arabidopsis Book, 13, e0178. doi:10.1199/tab.0178
Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., … Thomas, S. G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. doi:10.1105/tpc.106.047415
Guo, F.-Q., Wang, R., Chen, M., & Crawford, N. M. (2001). The Arabidopsis Dual-Affinity Nitrate Transporter Gene AtNRT1.1 (CHL1) Is Activated and Functions in Nascent Organ Development during Vegetative and Reproductive Growth. The Plant Cell, 13(8), 1761-1777. doi:10.1105/tpc.010126
Gutiérrez, R. A. (2012). Systems Biology for Enhanced Plant Nitrogen Nutrition. Science, 336(6089), 1673-1675. doi:10.1126/science.1217620
Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8
Ho, C.-H., Lin, S.-H., Hu, H.-C., & Tsay, Y.-F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138(6), 1184-1194. doi:10.1016/j.cell.2009.07.004
Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J., & Chen, X.-Y. (2012). Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24(6), 2635-2648. doi:10.1105/tpc.112.098749
Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024
Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001
IMAIZUMI, T., & KAY, S. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science, 11(11), 550-558. doi:10.1016/j.tplants.2006.09.004
Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., & Kay, S. A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426(6964), 302-306. doi:10.1038/nature02090
Jonassen, E. M., Sévin, D. C., & Lillo, C. (2009). The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. Journal of Plant Physiology, 166(18), 2071-2076. doi:10.1016/j.jplph.2009.05.010
Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell, 14(6), 787-799. doi:10.1016/j.molcel.2004.05.027
Kant, S., Peng, M., & Rothstein, S. J. (2011). Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis. PLoS Genetics, 7(3), e1002021. doi:10.1371/journal.pgen.1002021
Kim, S. Y., & Michaels, S. D. (2006). SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development, 133(23), 4699-4707. doi:10.1242/dev.02684
Kobayashi, Y. (1999). A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 286(5446), 1960-1962. doi:10.1126/science.286.5446.1960
Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 345-370. doi:10.1146/annurev.arplant.49.1.345
Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., & Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. The Plant Journal, 6(6), 911-919. doi:10.1046/j.1365-313x.1994.6060911.x
Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y.-F. (2010). Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265-272. doi:10.1016/j.pbi.2009.12.003
Lee, H. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14(18), 2366-2376. doi:10.1101/gad.813600
Lee, S., Kim, J., Han, J.-J., Han, M.-J., & An, G. (2004). Functional analyses of the flowering time geneOsMADS50, the putativeSUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice. The Plant Journal, 38(5), 754-764. doi:10.1111/j.1365-313x.2004.02082.x
Liu, K.-H., Huang, C.-Y., & Tsay, Y.-F. (1999). CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake. The Plant Cell, 11(5), 865-874. doi:10.1105/tpc.11.5.865
Liu, T., Li, Y., Ren, J., Qian, Y., Yang, X., Duan, W., & Hou, X. (2013). Nitrate or NaCl regulates floral induction in Arabidopsis thaliana. Biologia, 68(2). doi:10.2478/s11756-013-0004-x
Loeppky, H. A., & Coulman, B. E. (2001). Residue Removal and Nitrogen Fertilization Affects Tiller Development and Flowering in Meadow Bromegrass. Agronomy Journal, 93(4), 891-895. doi:10.2134/agronj2001.934891x
Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.x
Mateos, J. L., Bologna, N. G., Chorostecki, U., & Palatnik, J. F. (2010). Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology, 20(1), 49-54. doi:10.1016/j.cub.2009.10.072
Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009
Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F., & Schmid, M. (2009). Repression of Flowering by the miR172 Target SMZ. PLoS Biology, 7(7), e1000148. doi:10.1371/journal.pbio.1000148
Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology, 12(1), 75-80. doi:10.1016/j.pbi.2008.09.005
Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949
Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519
Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040
O’Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate Transport, Sensing, and Responses in Plants. Molecular Plant, 9(6), 837-856. doi:10.1016/j.molp.2016.05.004
Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1
Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164
Pouteau, S., & Albertini, C. (2009). The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany, 60(12), 3367-3377. doi:10.1093/jxb/erp173
Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238
Richter, R., Behringer, C., Muller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 24(18), 2093-2104. doi:10.1101/gad.594910
Richter, R., Behringer, C., Zourelidou, M., & Schwechheimer, C. (2013). Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 110(32), 13192-13197. doi:10.1073/pnas.1304250110
Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., … Hedden, P. (2007). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal, 53(3), 488-504. doi:10.1111/j.1365-313x.2007.03356.x
Riveras, E., Alvarez, J. M., Vidal, E. A., Oses, C., Vega, A., & Gutiérrez, R. A. (2015). The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant Physiology, 169(2), 1397-1404. doi:10.1104/pp.15.00961
Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041
Sawa, M., & Kay, S. A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(28), 11698-11703. doi:10.1073/pnas.1106771108
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019
Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018
Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546
Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7(5), 570-574. doi:10.1016/j.pbi.2004.07.002
Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-y
Stavang, J. A., Gallego-Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., … Blázquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal, 60(4), 589-601. doi:10.1111/j.1365-313x.2009.03983.x
Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138
Tal, I., Zhang, Y., Jørgensen, M. E., Pisanty, O., Barbosa, I. C. R., Zourelidou, M., … Shani, E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nature Communications, 7(1). doi:10.1038/ncomms11486
Dijken, A. J. H. van, Schluepmann, H., & Smeekens, S. C. M. (2004). Arabidopsis Trehalose-6-Phosphate Synthase 1 Is Essential for Normal Vegetative Growth and Transition to Flowering. Plant Physiology, 135(2), 969-977. doi:10.1104/pp.104.039743
Vidal, E. A., Moyano, T. C., Canales, J., & Gutierrez, R. A. (2014). Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 65(19), 5611-5618. doi:10.1093/jxb/eru326
Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., … Schmid, M. (2013). Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science, 339(6120), 704-707. doi:10.1126/science.1230406
Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723-4730. doi:10.1093/jxb/eru246
Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944
Wang, R., Xing, X., Wang, Y., Tran, A., & Crawford, N. M. (2009). A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1. Plant Physiology, 151(1), 472-478. doi:10.1104/pp.109.140434
Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiology, 100(1), 403-408. doi:10.1104/pp.100.1.403
Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031
Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010
Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., … He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109(19), E1192-E1200. doi:10.1073/pnas.1201616109
Yang, L., Xu, M., Koo, Y., He, J., & Poethig, R. S. (2013). Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2. doi:10.7554/elife.00260
Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., … Ahn, J. H. (2005). CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. doi:10.1104/pp.105.066928
Yu, S., Cao, L., Zhou, C.-M., Zhang, T.-Q., Lian, H., Sun, Y., … Wang, J.-W. (2013). Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2. doi:10.7554/elife.00269
Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014
Yuan, S., Zhang, Z.-W., Zheng, C., Zhao, Z.-Y., Wang, Y., Feng, L.-Y., … He, Y. (2016). Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences, 113(27), 7661-7666. doi:10.1073/pnas.1602004113
Zhang, H., Jennings, A., Barlow, P. W., & Forde, B. G. (1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 96(11), 6529-6534. doi:10.1073/pnas.96.11.6529
Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108
Zhu, Q.-H., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62(2), 487-495. doi:10.1093/jxb/erq295
[-]