Mostrar el registro sencillo del ítem
dc.contributor.author | Gras, D. | es_ES |
dc.contributor.author | Vidal, E. | es_ES |
dc.contributor.author | Undurraga, S. | es_ES |
dc.contributor.author | Riveras, E. | es_ES |
dc.contributor.author | Moreno, S. | es_ES |
dc.contributor.author | Dominguez-Figueroa, J. | es_ES |
dc.contributor.author | Alabadí Diego, David | es_ES |
dc.contributor.author | Blazquez Rodriguez, Miguel Angel | es_ES |
dc.contributor.author | Medina, Joaquín | es_ES |
dc.contributor.author | Gutierrez, R. | es_ES |
dc.date.accessioned | 2020-05-06T07:17:11Z | |
dc.date.available | 2020-05-06T07:17:11Z | |
dc.date.issued | 2018-01 | es_ES |
dc.identifier.issn | 0022-0957 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142506 | |
dc.description.abstract | [EN] The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana. | es_ES |
dc.description.sponsorship | We are grateful to Dr Claus Schwechheimer (Technische Universitat Munchen, Germany) for providing 35S::GNC, 35S::GNL, and gnc-gnl seeds. This work was supported by grants from the Howard Hughes Medical Institute, Fondo de Desarrollo de Areas Prioritarias (FONDAP) Center for Genome Regulation (15090007), Millennium Nucleus Center for Plant Systems and Synthetic Biology (NC130030) to RAG; Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) 1141097 to RAG, 11110083 to DG and 11121225 to EAV; Spanish Ministry of Economy and Competitiveness (grant BIO2013-43184-P) to DA and MAB; Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) RTA2015-00014-c02-01 to JM; Internationalization Program PUC (PUC1566) to JM; and INIA pre-doctoral fellowship to JDF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Developmental transition | es_ES |
dc.subject | Flowering | es_ES |
dc.subject | Gibberellic acid | es_ES |
dc.subject | Mineral nutrition | es_ES |
dc.subject | Nitrate | es_ES |
dc.subject | Nitrate transporter 1.1 | es_ES |
dc.subject | Schlafmutze | es_ES |
dc.subject | Schnarchzapfen | es_ES |
dc.title | SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/erx423 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//15090007/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1141097/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//11110083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//11121225/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00014-C02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UC//PUC1566/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Gras, D.; Vidal, E.; Undurraga, S.; Riveras, E.; Moreno, S.; Dominguez-Figueroa, J.; Alabadí Diego, D.... (2018). SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. Journal of Experimental Botany. 69(3):619-631. https://doi.org/10.1093/jxb/erx423 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/jxb/erx423 | es_ES |
dc.description.upvformatpinicio | 619 | es_ES |
dc.description.upvformatpfin | 631 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 69 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 29309650 | es_ES |
dc.relation.pasarela | S\382021 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Howard Hughes Medical Institute | es_ES |
dc.contributor.funder | Pontificia Universidad Católica de Chile | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.description.references | Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642 | es_ES |
dc.description.references | Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031 | es_ES |
dc.description.references | ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x | es_ES |
dc.description.references | Alexandre, C. M., & Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany, 59(6), 1127-1135. doi:10.1093/jxb/ern070 | es_ES |
dc.description.references | Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-López, O., Tamayo, K. P., … Gutiérrez, R. A. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response ofArabidopsis thalianaroots. The Plant Journal, 80(1), 1-13. doi:10.1111/tpj.12618 | es_ES |
dc.description.references | Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x | es_ES |
dc.description.references | Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291 | es_ES |
dc.description.references | Andrews, M., Raven, J. A., & Lea, P. J. (2013). Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 163(2), 174-199. doi:10.1111/aab.12045 | es_ES |
dc.description.references | Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238 | es_ES |
dc.description.references | Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 175-219. doi:10.1146/annurev.pp.39.060188.001135 | es_ES |
dc.description.references | Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological Signals That Induce Flowering. The Plant Cell, 5(10), 1147. doi:10.2307/3869768 | es_ES |
dc.description.references | Bi, Y.-M., Wang, R.-L., Zhu, T., & Rothstein, S. J. (2007). Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics, 8(1), 281. doi:10.1186/1471-2164-8-281 | es_ES |
dc.description.references | Bouguyon, E., Brun, F., Meynard, D., Kubeš, M., Pervent, M., Leran, S., … Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, 1(3). doi:10.1038/nplants.2015.15 | es_ES |
dc.description.references | Canales, J., Moyano, T. C., Villarroel, E., & Gutiérrez, R. A. (2014). Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00022 | es_ES |
dc.description.references | Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 142(2), 509-525. doi:10.1104/pp.106.082289 | es_ES |
dc.description.references | Cao, D., Hussain, A., Cheng, H., & Peng, J. (2005). Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta, 223(1), 105-113. doi:10.1007/s00425-005-0057-3 | es_ES |
dc.description.references | Castro Marín, I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., & Osuna, D. (2010). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233(3), 539-552. doi:10.1007/s00425-010-1316-5 | es_ES |
dc.description.references | Chandler, J., & Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants ofArabidopsis thaliana(L.) Heynh. Journal of Experimental Botany, 45(9), 1279-1288. doi:10.1093/jxb/45.9.1279 | es_ES |
dc.description.references | Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., … Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 316(5827), 1030-1033. doi:10.1126/science.1141752 | es_ES |
dc.description.references | Crawford, N. M., & Glass, A. D. . (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389-395. doi:10.1016/s1360-1385(98)01311-9 | es_ES |
dc.description.references | De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520 | es_ES |
dc.description.references | DICKENS, C. W. S., & STADEN, J. V. (1988). TheIn VitroFlowering ofKalanchöe blossfeldianaPoellniz. Journal of Experimental Botany, 39(4), 461-471. doi:10.1093/jxb/39.4.461 | es_ES |
dc.description.references | Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448 | es_ES |
dc.description.references | Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: Control of Flowering in Arabidopsis. Cell, 141(3), 550-550.e2. doi:10.1016/j.cell.2010.04.024 | es_ES |
dc.description.references | Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175-1180. doi:10.1073/pnas.96.4.1175 | es_ES |
dc.description.references | Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003 | es_ES |
dc.description.references | Golembeski, G. S., & Imaizumi, T. (2015). Photoperiodic Regulation of Florigen Function inArabidopsis thaliana. The Arabidopsis Book, 13, e0178. doi:10.1199/tab.0178 | es_ES |
dc.description.references | Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., … Thomas, S. G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. doi:10.1105/tpc.106.047415 | es_ES |
dc.description.references | Guo, F.-Q., Wang, R., Chen, M., & Crawford, N. M. (2001). The Arabidopsis Dual-Affinity Nitrate Transporter Gene AtNRT1.1 (CHL1) Is Activated and Functions in Nascent Organ Development during Vegetative and Reproductive Growth. The Plant Cell, 13(8), 1761-1777. doi:10.1105/tpc.010126 | es_ES |
dc.description.references | Gutiérrez, R. A. (2012). Systems Biology for Enhanced Plant Nitrogen Nutrition. Science, 336(6089), 1673-1675. doi:10.1126/science.1217620 | es_ES |
dc.description.references | Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 | es_ES |
dc.description.references | Ho, C.-H., Lin, S.-H., Hu, H.-C., & Tsay, Y.-F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138(6), 1184-1194. doi:10.1016/j.cell.2009.07.004 | es_ES |
dc.description.references | Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J., & Chen, X.-Y. (2012). Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24(6), 2635-2648. doi:10.1105/tpc.112.098749 | es_ES |
dc.description.references | Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024 | es_ES |
dc.description.references | Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001 | es_ES |
dc.description.references | IMAIZUMI, T., & KAY, S. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science, 11(11), 550-558. doi:10.1016/j.tplants.2006.09.004 | es_ES |
dc.description.references | Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., & Kay, S. A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426(6964), 302-306. doi:10.1038/nature02090 | es_ES |
dc.description.references | Jonassen, E. M., Sévin, D. C., & Lillo, C. (2009). The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. Journal of Plant Physiology, 166(18), 2071-2076. doi:10.1016/j.jplph.2009.05.010 | es_ES |
dc.description.references | Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell, 14(6), 787-799. doi:10.1016/j.molcel.2004.05.027 | es_ES |
dc.description.references | Kant, S., Peng, M., & Rothstein, S. J. (2011). Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis. PLoS Genetics, 7(3), e1002021. doi:10.1371/journal.pgen.1002021 | es_ES |
dc.description.references | Kim, S. Y., & Michaels, S. D. (2006). SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development, 133(23), 4699-4707. doi:10.1242/dev.02684 | es_ES |
dc.description.references | Kobayashi, Y. (1999). A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 286(5446), 1960-1962. doi:10.1126/science.286.5446.1960 | es_ES |
dc.description.references | Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 345-370. doi:10.1146/annurev.arplant.49.1.345 | es_ES |
dc.description.references | Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., & Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. The Plant Journal, 6(6), 911-919. doi:10.1046/j.1365-313x.1994.6060911.x | es_ES |
dc.description.references | Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y.-F. (2010). Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265-272. doi:10.1016/j.pbi.2009.12.003 | es_ES |
dc.description.references | Lee, H. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14(18), 2366-2376. doi:10.1101/gad.813600 | es_ES |
dc.description.references | Lee, S., Kim, J., Han, J.-J., Han, M.-J., & An, G. (2004). Functional analyses of the flowering time geneOsMADS50, the putativeSUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice. The Plant Journal, 38(5), 754-764. doi:10.1111/j.1365-313x.2004.02082.x | es_ES |
dc.description.references | Liu, K.-H., Huang, C.-Y., & Tsay, Y.-F. (1999). CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake. The Plant Cell, 11(5), 865-874. doi:10.1105/tpc.11.5.865 | es_ES |
dc.description.references | Liu, T., Li, Y., Ren, J., Qian, Y., Yang, X., Duan, W., & Hou, X. (2013). Nitrate or NaCl regulates floral induction in Arabidopsis thaliana. Biologia, 68(2). doi:10.2478/s11756-013-0004-x | es_ES |
dc.description.references | Loeppky, H. A., & Coulman, B. E. (2001). Residue Removal and Nitrogen Fertilization Affects Tiller Development and Flowering in Meadow Bromegrass. Agronomy Journal, 93(4), 891-895. doi:10.2134/agronj2001.934891x | es_ES |
dc.description.references | Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.x | es_ES |
dc.description.references | Mateos, J. L., Bologna, N. G., Chorostecki, U., & Palatnik, J. F. (2010). Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology, 20(1), 49-54. doi:10.1016/j.cub.2009.10.072 | es_ES |
dc.description.references | Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009 | es_ES |
dc.description.references | Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F., & Schmid, M. (2009). Repression of Flowering by the miR172 Target SMZ. PLoS Biology, 7(7), e1000148. doi:10.1371/journal.pbio.1000148 | es_ES |
dc.description.references | Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology, 12(1), 75-80. doi:10.1016/j.pbi.2008.09.005 | es_ES |
dc.description.references | Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949 | es_ES |
dc.description.references | Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519 | es_ES |
dc.description.references | Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040 | es_ES |
dc.description.references | O’Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate Transport, Sensing, and Responses in Plants. Molecular Plant, 9(6), 837-856. doi:10.1016/j.molp.2016.05.004 | es_ES |
dc.description.references | Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1 | es_ES |
dc.description.references | Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164 | es_ES |
dc.description.references | Pouteau, S., & Albertini, C. (2009). The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany, 60(12), 3367-3377. doi:10.1093/jxb/erp173 | es_ES |
dc.description.references | Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238 | es_ES |
dc.description.references | Richter, R., Behringer, C., Muller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 24(18), 2093-2104. doi:10.1101/gad.594910 | es_ES |
dc.description.references | Richter, R., Behringer, C., Zourelidou, M., & Schwechheimer, C. (2013). Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 110(32), 13192-13197. doi:10.1073/pnas.1304250110 | es_ES |
dc.description.references | Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., … Hedden, P. (2007). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal, 53(3), 488-504. doi:10.1111/j.1365-313x.2007.03356.x | es_ES |
dc.description.references | Riveras, E., Alvarez, J. M., Vidal, E. A., Oses, C., Vega, A., & Gutiérrez, R. A. (2015). The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant Physiology, 169(2), 1397-1404. doi:10.1104/pp.15.00961 | es_ES |
dc.description.references | Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041 | es_ES |
dc.description.references | Sawa, M., & Kay, S. A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(28), 11698-11703. doi:10.1073/pnas.1106771108 | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018 | es_ES |
dc.description.references | Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546 | es_ES |
dc.description.references | Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7(5), 570-574. doi:10.1016/j.pbi.2004.07.002 | es_ES |
dc.description.references | Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-y | es_ES |
dc.description.references | Stavang, J. A., Gallego-Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., … Blázquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal, 60(4), 589-601. doi:10.1111/j.1365-313x.2009.03983.x | es_ES |
dc.description.references | Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138 | es_ES |
dc.description.references | Tal, I., Zhang, Y., Jørgensen, M. E., Pisanty, O., Barbosa, I. C. R., Zourelidou, M., … Shani, E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nature Communications, 7(1). doi:10.1038/ncomms11486 | es_ES |
dc.description.references | Dijken, A. J. H. van, Schluepmann, H., & Smeekens, S. C. M. (2004). Arabidopsis Trehalose-6-Phosphate Synthase 1 Is Essential for Normal Vegetative Growth and Transition to Flowering. Plant Physiology, 135(2), 969-977. doi:10.1104/pp.104.039743 | es_ES |
dc.description.references | Vidal, E. A., Moyano, T. C., Canales, J., & Gutierrez, R. A. (2014). Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 65(19), 5611-5618. doi:10.1093/jxb/eru326 | es_ES |
dc.description.references | Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., … Schmid, M. (2013). Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science, 339(6120), 704-707. doi:10.1126/science.1230406 | es_ES |
dc.description.references | Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723-4730. doi:10.1093/jxb/eru246 | es_ES |
dc.description.references | Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944 | es_ES |
dc.description.references | Wang, R., Xing, X., Wang, Y., Tran, A., & Crawford, N. M. (2009). A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1. Plant Physiology, 151(1), 472-478. doi:10.1104/pp.109.140434 | es_ES |
dc.description.references | Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiology, 100(1), 403-408. doi:10.1104/pp.100.1.403 | es_ES |
dc.description.references | Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031 | es_ES |
dc.description.references | Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010 | es_ES |
dc.description.references | Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., … He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109(19), E1192-E1200. doi:10.1073/pnas.1201616109 | es_ES |
dc.description.references | Yang, L., Xu, M., Koo, Y., He, J., & Poethig, R. S. (2013). Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2. doi:10.7554/elife.00260 | es_ES |
dc.description.references | Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., … Ahn, J. H. (2005). CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. doi:10.1104/pp.105.066928 | es_ES |
dc.description.references | Yu, S., Cao, L., Zhou, C.-M., Zhang, T.-Q., Lian, H., Sun, Y., … Wang, J.-W. (2013). Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2. doi:10.7554/elife.00269 | es_ES |
dc.description.references | Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014 | es_ES |
dc.description.references | Yuan, S., Zhang, Z.-W., Zheng, C., Zhao, Z.-Y., Wang, Y., Feng, L.-Y., … He, Y. (2016). Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences, 113(27), 7661-7666. doi:10.1073/pnas.1602004113 | es_ES |
dc.description.references | Zhang, H., Jennings, A., Barlow, P. W., & Forde, B. G. (1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 96(11), 6529-6534. doi:10.1073/pnas.96.11.6529 | es_ES |
dc.description.references | Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108 | es_ES |
dc.description.references | Zhu, Q.-H., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62(2), 487-495. doi:10.1093/jxb/erq295 | es_ES |