- -

SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gras, D. es_ES
dc.contributor.author Vidal, E. es_ES
dc.contributor.author Undurraga, S. es_ES
dc.contributor.author Riveras, E. es_ES
dc.contributor.author Moreno, S. es_ES
dc.contributor.author Dominguez-Figueroa, J. es_ES
dc.contributor.author Alabadí Diego, David es_ES
dc.contributor.author Blazquez Rodriguez, Miguel Angel es_ES
dc.contributor.author Medina, Joaquín es_ES
dc.contributor.author Gutierrez, R. es_ES
dc.date.accessioned 2020-05-06T07:17:11Z
dc.date.available 2020-05-06T07:17:11Z
dc.date.issued 2018-01 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142506
dc.description.abstract [EN] The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana. es_ES
dc.description.sponsorship We are grateful to Dr Claus Schwechheimer (Technische Universitat Munchen, Germany) for providing 35S::GNC, 35S::GNL, and gnc-gnl seeds. This work was supported by grants from the Howard Hughes Medical Institute, Fondo de Desarrollo de Areas Prioritarias (FONDAP) Center for Genome Regulation (15090007), Millennium Nucleus Center for Plant Systems and Synthetic Biology (NC130030) to RAG; Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) 1141097 to RAG, 11110083 to DG and 11121225 to EAV; Spanish Ministry of Economy and Competitiveness (grant BIO2013-43184-P) to DA and MAB; Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) RTA2015-00014-c02-01 to JM; Internationalization Program PUC (PUC1566) to JM; and INIA pre-doctoral fellowship to JDF. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Developmental transition es_ES
dc.subject Flowering es_ES
dc.subject Gibberellic acid es_ES
dc.subject Mineral nutrition es_ES
dc.subject Nitrate es_ES
dc.subject Nitrate transporter 1.1 es_ES
dc.subject Schlafmutze es_ES
dc.subject Schnarchzapfen es_ES
dc.title SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erx423 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//15090007/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//1141097/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11110083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11121225/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00014-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UC//PUC1566/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gras, D.; Vidal, E.; Undurraga, S.; Riveras, E.; Moreno, S.; Dominguez-Figueroa, J.; Alabadí Diego, D.... (2018). SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. Journal of Experimental Botany. 69(3):619-631. https://doi.org/10.1093/jxb/erx423 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/erx423 es_ES
dc.description.upvformatpinicio 619 es_ES
dc.description.upvformatpfin 631 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 69 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 29309650 es_ES
dc.relation.pasarela S\382021 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Howard Hughes Medical Institute es_ES
dc.contributor.funder Pontificia Universidad Católica de Chile es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Achard, P. (2006). Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311(5757), 91-94. doi:10.1126/science.1118642 es_ES
dc.description.references Adrian, J., Torti, S., & Turck, F. (2009). From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant, 2(4), 628-642. doi:10.1093/mp/ssp031 es_ES
dc.description.references ALBORESI, A., GESTIN, C., LEYDECKER, M.-T., BEDU, M., MEYER, C., & TRUONG, H.-N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500-512. doi:10.1111/j.1365-3040.2005.01292.x es_ES
dc.description.references Alexandre, C. M., & Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany, 59(6), 1127-1135. doi:10.1093/jxb/ern070 es_ES
dc.description.references Alvarez, J. M., Riveras, E., Vidal, E. A., Gras, D. E., Contreras-López, O., Tamayo, K. P., … Gutiérrez, R. A. (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response ofArabidopsis thalianaroots. The Plant Journal, 80(1), 1-13. doi:10.1111/tpj.12618 es_ES
dc.description.references Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x es_ES
dc.description.references Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291 es_ES
dc.description.references Andrews, M., Raven, J. A., & Lea, P. J. (2013). Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 163(2), 174-199. doi:10.1111/aab.12045 es_ES
dc.description.references Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238 es_ES
dc.description.references Bernier, G. (1988). The Control of Floral Evocation and Morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 175-219. doi:10.1146/annurev.pp.39.060188.001135 es_ES
dc.description.references Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological Signals That Induce Flowering. The Plant Cell, 5(10), 1147. doi:10.2307/3869768 es_ES
dc.description.references Bi, Y.-M., Wang, R.-L., Zhu, T., & Rothstein, S. J. (2007). Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics, 8(1), 281. doi:10.1186/1471-2164-8-281 es_ES
dc.description.references Bouguyon, E., Brun, F., Meynard, D., Kubeš, M., Pervent, M., Leran, S., … Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, 1(3). doi:10.1038/nplants.2015.15 es_ES
dc.description.references Canales, J., Moyano, T. C., Villarroel, E., & Gutiérrez, R. A. (2014). Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00022 es_ES
dc.description.references Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 142(2), 509-525. doi:10.1104/pp.106.082289 es_ES
dc.description.references Cao, D., Hussain, A., Cheng, H., & Peng, J. (2005). Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta, 223(1), 105-113. doi:10.1007/s00425-005-0057-3 es_ES
dc.description.references Castro Marín, I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., & Osuna, D. (2010). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233(3), 539-552. doi:10.1007/s00425-010-1316-5 es_ES
dc.description.references Chandler, J., & Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants ofArabidopsis thaliana(L.) Heynh. Journal of Experimental Botany, 45(9), 1279-1288. doi:10.1093/jxb/45.9.1279 es_ES
dc.description.references Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., … Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 316(5827), 1030-1033. doi:10.1126/science.1141752 es_ES
dc.description.references Crawford, N. M., & Glass, A. D. . (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389-395. doi:10.1016/s1360-1385(98)01311-9 es_ES
dc.description.references De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520 es_ES
dc.description.references DICKENS, C. W. S., & STADEN, J. V. (1988). TheIn VitroFlowering ofKalanchöe blossfeldianaPoellniz. Journal of Experimental Botany, 39(4), 461-471. doi:10.1093/jxb/39.4.461 es_ES
dc.description.references Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448 es_ES
dc.description.references Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: Control of Flowering in Arabidopsis. Cell, 141(3), 550-550.e2. doi:10.1016/j.cell.2010.04.024 es_ES
dc.description.references Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175-1180. doi:10.1073/pnas.96.4.1175 es_ES
dc.description.references Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003 es_ES
dc.description.references Golembeski, G. S., & Imaizumi, T. (2015). Photoperiodic Regulation of Florigen Function inArabidopsis thaliana. The Arabidopsis Book, 13, e0178. doi:10.1199/tab.0178 es_ES
dc.description.references Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., … Thomas, S. G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. doi:10.1105/tpc.106.047415 es_ES
dc.description.references Guo, F.-Q., Wang, R., Chen, M., & Crawford, N. M. (2001). The Arabidopsis Dual-Affinity Nitrate Transporter Gene AtNRT1.1 (CHL1) Is Activated and Functions in Nascent Organ Development during Vegetative and Reproductive Growth. The Plant Cell, 13(8), 1761-1777. doi:10.1105/tpc.010126 es_ES
dc.description.references Gutiérrez, R. A. (2012). Systems Biology for Enhanced Plant Nitrogen Nutrition. Science, 336(6089), 1673-1675. doi:10.1126/science.1217620 es_ES
dc.description.references Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 es_ES
dc.description.references Ho, C.-H., Lin, S.-H., Hu, H.-C., & Tsay, Y.-F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138(6), 1184-1194. doi:10.1016/j.cell.2009.07.004 es_ES
dc.description.references Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J., & Chen, X.-Y. (2012). Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24(6), 2635-2648. doi:10.1105/tpc.112.098749 es_ES
dc.description.references Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024 es_ES
dc.description.references Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254-266. doi:10.1016/j.devcel.2016.04.001 es_ES
dc.description.references IMAIZUMI, T., & KAY, S. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science, 11(11), 550-558. doi:10.1016/j.tplants.2006.09.004 es_ES
dc.description.references Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., & Kay, S. A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426(6964), 302-306. doi:10.1038/nature02090 es_ES
dc.description.references Jonassen, E. M., Sévin, D. C., & Lillo, C. (2009). The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. Journal of Plant Physiology, 166(18), 2071-2076. doi:10.1016/j.jplph.2009.05.010 es_ES
dc.description.references Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell, 14(6), 787-799. doi:10.1016/j.molcel.2004.05.027 es_ES
dc.description.references Kant, S., Peng, M., & Rothstein, S. J. (2011). Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis. PLoS Genetics, 7(3), e1002021. doi:10.1371/journal.pgen.1002021 es_ES
dc.description.references Kim, S. Y., & Michaels, S. D. (2006). SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development, 133(23), 4699-4707. doi:10.1242/dev.02684 es_ES
dc.description.references Kobayashi, Y. (1999). A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 286(5446), 1960-1962. doi:10.1126/science.286.5446.1960 es_ES
dc.description.references Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 345-370. doi:10.1146/annurev.arplant.49.1.345 es_ES
dc.description.references Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., & Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. The Plant Journal, 6(6), 911-919. doi:10.1046/j.1365-313x.1994.6060911.x es_ES
dc.description.references Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y.-F. (2010). Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 13(3), 265-272. doi:10.1016/j.pbi.2009.12.003 es_ES
dc.description.references Lee, H. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14(18), 2366-2376. doi:10.1101/gad.813600 es_ES
dc.description.references Lee, S., Kim, J., Han, J.-J., Han, M.-J., & An, G. (2004). Functional analyses of the flowering time geneOsMADS50, the putativeSUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice. The Plant Journal, 38(5), 754-764. doi:10.1111/j.1365-313x.2004.02082.x es_ES
dc.description.references Liu, K.-H., Huang, C.-Y., & Tsay, Y.-F. (1999). CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake. The Plant Cell, 11(5), 865-874. doi:10.1105/tpc.11.5.865 es_ES
dc.description.references Liu, T., Li, Y., Ren, J., Qian, Y., Yang, X., Duan, W., & Hou, X. (2013). Nitrate or NaCl regulates floral induction in Arabidopsis thaliana. Biologia, 68(2). doi:10.2478/s11756-013-0004-x es_ES
dc.description.references Loeppky, H. A., & Coulman, B. E. (2001). Residue Removal and Nitrogen Fertilization Affects Tiller Development and Flowering in Meadow Bromegrass. Agronomy Journal, 93(4), 891-895. doi:10.2134/agronj2001.934891x es_ES
dc.description.references Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.x es_ES
dc.description.references Mateos, J. L., Bologna, N. G., Chorostecki, U., & Palatnik, J. F. (2010). Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology, 20(1), 49-54. doi:10.1016/j.cub.2009.10.072 es_ES
dc.description.references Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009 es_ES
dc.description.references Mathieu, J., Yant, L. J., Mürdter, F., Küttner, F., & Schmid, M. (2009). Repression of Flowering by the miR172 Target SMZ. PLoS Biology, 7(7), e1000148. doi:10.1371/journal.pbio.1000148 es_ES
dc.description.references Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology, 12(1), 75-80. doi:10.1016/j.pbi.2008.09.005 es_ES
dc.description.references Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949 es_ES
dc.description.references Murase, K., Hirano, Y., Sun, T., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. doi:10.1038/nature07519 es_ES
dc.description.references Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040 es_ES
dc.description.references O’Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate Transport, Sensing, and Responses in Plants. Molecular Plant, 9(6), 837-856. doi:10.1016/j.molp.2016.05.004 es_ES
dc.description.references Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1 es_ES
dc.description.references Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164 es_ES
dc.description.references Pouteau, S., & Albertini, C. (2009). The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. Journal of Experimental Botany, 60(12), 3367-3377. doi:10.1093/jxb/erp173 es_ES
dc.description.references Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238 es_ES
dc.description.references Richter, R., Behringer, C., Muller, I. K., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 24(18), 2093-2104. doi:10.1101/gad.594910 es_ES
dc.description.references Richter, R., Behringer, C., Zourelidou, M., & Schwechheimer, C. (2013). Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 110(32), 13192-13197. doi:10.1073/pnas.1304250110 es_ES
dc.description.references Rieu, I., Ruiz-Rivero, O., Fernandez-Garcia, N., Griffiths, J., Powers, S. J., Gong, F., … Hedden, P. (2007). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal, 53(3), 488-504. doi:10.1111/j.1365-313x.2007.03356.x es_ES
dc.description.references Riveras, E., Alvarez, J. M., Vidal, E. A., Oses, C., Vega, A., & Gutiérrez, R. A. (2015). The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant Physiology, 169(2), 1397-1404. doi:10.1104/pp.15.00961 es_ES
dc.description.references Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041 es_ES
dc.description.references Sawa, M., & Kay, S. A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(28), 11698-11703. doi:10.1073/pnas.1106771108 es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018 es_ES
dc.description.references Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546 es_ES
dc.description.references Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7(5), 570-574. doi:10.1016/j.pbi.2004.07.002 es_ES
dc.description.references Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-y es_ES
dc.description.references Stavang, J. A., Gallego-Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., … Blázquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal, 60(4), 589-601. doi:10.1111/j.1365-313x.2009.03983.x es_ES
dc.description.references Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138 es_ES
dc.description.references Tal, I., Zhang, Y., Jørgensen, M. E., Pisanty, O., Barbosa, I. C. R., Zourelidou, M., … Shani, E. (2016). The Arabidopsis NPF3 protein is a GA transporter. Nature Communications, 7(1). doi:10.1038/ncomms11486 es_ES
dc.description.references Dijken, A. J. H. van, Schluepmann, H., & Smeekens, S. C. M. (2004). Arabidopsis Trehalose-6-Phosphate Synthase 1 Is Essential for Normal Vegetative Growth and Transition to Flowering. Plant Physiology, 135(2), 969-977. doi:10.1104/pp.104.039743 es_ES
dc.description.references Vidal, E. A., Moyano, T. C., Canales, J., & Gutierrez, R. A. (2014). Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 65(19), 5611-5618. doi:10.1093/jxb/eru326 es_ES
dc.description.references Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., … Schmid, M. (2013). Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science, 339(6120), 704-707. doi:10.1126/science.1230406 es_ES
dc.description.references Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723-4730. doi:10.1093/jxb/eru246 es_ES
dc.description.references Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944 es_ES
dc.description.references Wang, R., Xing, X., Wang, Y., Tran, A., & Crawford, N. M. (2009). A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.1. Plant Physiology, 151(1), 472-478. doi:10.1104/pp.109.140434 es_ES
dc.description.references Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiology, 100(1), 403-408. doi:10.1104/pp.100.1.403 es_ES
dc.description.references Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031 es_ES
dc.description.references Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010 es_ES
dc.description.references Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., … He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109(19), E1192-E1200. doi:10.1073/pnas.1201616109 es_ES
dc.description.references Yang, L., Xu, M., Koo, Y., He, J., & Poethig, R. S. (2013). Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2. doi:10.7554/elife.00260 es_ES
dc.description.references Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., … Ahn, J. H. (2005). CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. doi:10.1104/pp.105.066928 es_ES
dc.description.references Yu, S., Cao, L., Zhou, C.-M., Zhang, T.-Q., Lian, H., Sun, Y., … Wang, J.-W. (2013). Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2. doi:10.7554/elife.00269 es_ES
dc.description.references Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014 es_ES
dc.description.references Yuan, S., Zhang, Z.-W., Zheng, C., Zhao, Z.-Y., Wang, Y., Feng, L.-Y., … He, Y. (2016). Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences, 113(27), 7661-7666. doi:10.1073/pnas.1602004113 es_ES
dc.description.references Zhang, H., Jennings, A., Barlow, P. W., & Forde, B. G. (1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 96(11), 6529-6534. doi:10.1073/pnas.96.11.6529 es_ES
dc.description.references Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108 es_ES
dc.description.references Zhu, Q.-H., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62(2), 487-495. doi:10.1093/jxb/erq295 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem