- -

Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

Mostrar el registro completo del ítem

Martínez-Mateu, L.; Romero Pérez, L.; Ferrer Albero, A.; Sebastián Aguilar, R.; Rodriguez Matas, JF.; Jalife, J.; Berenfeld, O.... (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLoS Computational Biology. 14(3):1-26. https://doi.org/10.1371/journal.pcbi.1006017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142508

Ficheros en el ítem

Metadatos del ítem

Título: Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study
Autor: Martínez-Mateu, Laura Romero Pérez, Lucia Ferrer Albero, Ana Sebastián Aguilar, Rafael Rodriguez Matas, José Félix Jalife, José Berenfeld, Omer Saiz Rodríguez, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use ...[+]
Palabras clave: Atrial fibrillation , Mapping catheters , Rotors , Phase analysis
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS Computational Biology. (issn: 1553-734X )
DOI: 10.1371/journal.pcbi.1006017
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pcbi.1006017
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-59932-JIN/ES/CARACTERIZACION Y DIAGNOSTICO NO INVASIVO DE ARRITMIAS CARDIACAS MEDIANTE MODELADO COMPUTACIONAL 3D ANATOMO-FUNCIONAL DEL CORAZON Y TORSO HUMANO/
...[+]
info:eu-repo/grantAgreement/MINECO//TIN2014-59932-JIN/ES/CARACTERIZACION Y DIAGNOSTICO NO INVASIVO DE ARRITMIAS CARDIACAS MEDIANTE MODELADO COMPUTACIONAL 3D ANATOMO-FUNCIONAL DEL CORAZON Y TORSO HUMANO/
info:eu-repo/grantAgreement/NIH//R01HL122352/
info:eu-repo/grantAgreement/NIH//R01HL118304/
info:eu-repo/grantAgreement/NIH//P01HL087236/
info:eu-repo/grantAgreement/NIH//P01HL039707/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/
info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/
[-]
Agradecimientos:
This work was partially supported by: Programa Prometeu de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana (www.edu.gva.es/fio/index_es.asp). Award Number: PROMETEU/2016/088 to JS;"Plan Estatal de ...[+]
Tipo: Artículo

References

Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A., … Wilber, D. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Journal of Interventional Cardiac Electrophysiology, 33(2), 171-257. doi:10.1007/s10840-012-9672-7

January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 [+]
Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A., … Wilber, D. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Journal of Interventional Cardiac Electrophysiology, 33(2), 171-257. doi:10.1007/s10840-012-9672-7

January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., … Alfieri, O. (2001). Atrial Electroanatomic Remodeling After Circumferential Radiofrequency Pulmonary Vein Ablation. Circulation, 104(21), 2539-2544. doi:10.1161/hc4601.098517

Oral, H., Knight, B. P., Tada, H., Özaydın, M., Chugh, A., Hassan, S., … Morady, F. (2002). Pulmonary Vein Isolation for Paroxysmal and Persistent Atrial Fibrillation. Circulation, 105(9), 1077-1081. doi:10.1161/hc0902.104712

Todd, D. M., Skanes, A. C., Guiraudon, G., Guiraudon, C., Krahn, A. D., Yee, R., & Klein, G. J. (2003). Role of the Posterior Left Atrium and Pulmonary Veins in Human Lone Atrial Fibrillation. Circulation, 108(25), 3108-3114. doi:10.1161/01.cir.0000104567.72914.bf

Narayan, S. M., Krummen, D. E., Enyeart, M. W., & Rappel, W.-J. (2012). Computational Mapping Identifies Localized Mechanisms for Ablation of Atrial Fibrillation. PLoS ONE, 7(9), e46034. doi:10.1371/journal.pone.0046034

Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M., & Rappel, W.-J. (2013). Panoramic Electrophysiological Mapping but not Electrogram Morphology Identifies Stable Sources for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 58-67. doi:10.1161/circep.111.977264

Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194

Yamazaki, M., Mironov, S., Taravant, C., Brec, J., Vaquero, L. M., Bandaru, K., … Kalifa, J. (2012). Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 94(1), 48-57. doi:10.1093/cvr/cvr357

Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631

Berenfeld, O., Zaitsev, A. V., Mironov, S. F., Pertsov, A. M., & Jalife, J. (2002). Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium. Circulation Research, 90(11), 1173-1180. doi:10.1161/01.res.0000022854.95998.5c

Hansen, B. J., Zhao, J., Csepe, T. A., Moore, B. T., Li, N., Jayne, L. A., … Fedorov, V. V. (2015). Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 36(35), 2390-2401. doi:10.1093/eurheartj/ehv233

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022

Benharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., & Mandapati, R. (2015). Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(3), 554-561. doi:10.1161/circep.115.002721

Sasaki, N., Okumura, Y., Watanabe, I., Madry, A., Hamano, Y., Nikaido, M., … Hirayama, A. (2016). Localized rotors and focal impulse sources within the left atrium in human atrial fibrillation: A phase analysis of contact basket catheter electrograms. Journal of Arrhythmia, 32(2), 141-144. doi:10.1016/j.joa.2015.11.010

TAI, C.-T., & CHEN, S.-A. (2009). Noncontact Mapping of the Heart: How and When to Use. Journal of Cardiovascular Electrophysiology, 20(1), 123-126. doi:10.1111/j.1540-8167.2008.01302.x

Weerasooriya, R., Khairy, P., Litalien, J., Macle, L., Hocini, M., Sacher, F., … Jais, P. (2011). Catheter Ablation for Atrial Fibrillation. Journal of the American College of Cardiology, 57(2), 160-166. doi:10.1016/j.jacc.2010.05.061

Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., … Shivkumar, K. (2016). Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience. Heart Rhythm, 13(3), 636-641. doi:10.1016/j.hrthm.2015.10.031

Berntsen, R. F., Håland, T. F., Skårdal, R., & Holm, T. (2016). Focal impulse and rotor modulation as a stand-alone procedure for the treatment of paroxysmal atrial fibrillation: A within-patient controlled study with implanted cardiac monitoring. Heart Rhythm, 13(9), 1768-1774. doi:10.1016/j.hrthm.2016.04.016

Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573

Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301

Feng, J., Yue, L., Wang, Z., & Nattel, S. (1998). Ionic Mechanisms of Regional Action Potential Heterogeneity in the Canine Right Atrium. Circulation Research, 83(5), 541-551. doi:10.1161/01.res.83.5.541

Li, D., Zhang, L., Kneller, J., & Nattel, S. (2001). Potential Ionic Mechanism for Repolarization Differences Between Canine Right and Left Atrium. Circulation Research, 88(11), 1168-1175. doi:10.1161/hh1101.091266

Cha, T.-J., Ehrlich, J. R., Zhang, L., Chartier, D., Leung, T. K., & Nattel, S. (2005). Atrial Tachycardia Remodeling of Pulmonary Vein Cardiomyocytes. Circulation, 111(6), 728-735. doi:10.1161/01.cir.0000155240.05251.d0

Wang, Z. G., Pelletier, L. C., Talajic, M., & Nattel, S. (1990). Effects of flecainide and quinidine on human atrial action potentials. Role of rate-dependence and comparison with guinea pig, rabbit, and dog tissues. Circulation, 82(1), 274-283. doi:10.1161/01.cir.82.1.274

Wang, Z., Fermini, B., & Nattel, S. (1993). Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circulation Research, 73(6), 1061-1076. doi:10.1161/01.res.73.6.1061

Seemann, G., Höper, C., Sachse, F. B., Dössel, O., Holden, A. V., & Zhang, H. (2006). Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1843), 1465-1481. doi:10.1098/rsta.2006.1781

Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883

Krueger, M. W., Dorn, A., Keller, D. U. J., Holmqvist, F., Carlson, J., Platonov, P. G., … Dössel, O. (2013). In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical & Biological Engineering & Computing, 51(10), 1105-1119. doi:10.1007/s11517-013-1090-1

Colman, M. A. (2014). Mechanisms of Atrial Arrhythmias. Springer Theses. doi:10.1007/978-3-319-01643-6

LEMERY, R., BIRNIE, D., TANG, A. S. L., GREEN, M., GOLLOB, M., HENDRY, M., & LAU, E. (2007). Normal Atrial Activation and Voltage During Sinus Rhythm in the Human Heart: An Endocardial and Epicardial Mapping Study in Patients with a History of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 18(4), 402-408. doi:10.1111/j.1540-8167.2007.00762.x

Caballero, R., de la Fuente, M. G., Gómez, R., Barana, A., Amorós, I., Dolz-Gaitón, P., … Delpón, E. (2010). In Humans, Chronic Atrial Fibrillation Decreases the Transient Outward Current and Ultrarapid Component of the Delayed Rectifier Current Differentially on Each Atria and Increases the Slow Component of the Delayed Rectifier Current in Both. Journal of the American College of Cardiology, 55(21), 2346-2354. doi:10.1016/j.jacc.2010.02.028

Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9

Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-Type Ca2+Currents and Human Atrial Fibrillation. Circulation Research, 85(5), 428-436. doi:10.1161/01.res.85.5.428

Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7

Dobrev, D., Graf, E., Wettwer, E., Himmel, H. M., Hála, O., Doerfel, C., … Ravens, U. (2001). Molecular Basis of Downregulation of G-Protein–Coupled Inward Rectifying K+Current (IK,ACh) in Chronic Human Atrial Fibrillation. Circulation, 104(21), 2551-2557. doi:10.1161/hc4601.099466

Voigt, N., Trausch, A., Knaut, M., Matschke, K., Varró, A., Van Wagoner, D. R., … Dobrev, D. (2010). Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(5), 472-480. doi:10.1161/circep.110.954636

Courtemanche, M. (1999). Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovascular Research, 42(2), 477-489. doi:10.1016/s0008-6363(99)00034-6

Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., & Seemann, G. (2013). Benchmarking electrophysiological models of human atrial myocytes. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00487

Grandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., & Bers, D. M. (2011). Human Atrial Action Potential and Ca2+Model. Circulation Research, 109(9), 1055-1066. doi:10.1161/circresaha.111.253955

Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6

Colman, M. A., Aslanidi, O. V., Kharche, S., Boyett, M. R., Garratt, C., Hancox, J. C., & Zhang, H. (2013). Pro‐arrhythmogenic effects of atrial fibrillation‐induced electrical remodelling: insights from the three‐dimensional virtual human atria. The Journal of Physiology, 591(17), 4249-4272. doi:10.1113/jphysiol.2013.254987

Wilhelm, M., Kirste, W., Kuly, S., Amann, K., Neuhuber, W., Weyand, M., … Garlichs, C. (2006). Atrial Distribution of Connexin 40 and 43 in Patients with Intermittent, Persistent, and Postoperative Atrial Fibrillation. Heart, Lung and Circulation, 15(1), 30-37. doi:10.1016/j.hlc.2005.06.011

Van der Velden, H. (2000). Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovascular Research, 46(3), 476-486. doi:10.1016/s0008-6363(00)00026-2

Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485

Geselowitz, D. B., & Miller, W. T. (1983). A bidomain model for anisotropic cardiac muscle. Annals of Biomedical Engineering, 11(3-4), 191-206. doi:10.1007/bf02363286

Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013

Warren, M., Guha, P. K., Berenfeld, O., Zaitsev, A., Anumonwo, J. M. B., Dhamoon, A. S., … Jalife, J. (2003). Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 14(6), 621-631. doi:10.1046/j.1540-8167.2003.03006.x

Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164

Chen, J., Mandapati, R., Berenfeld, O., Skanes, A. C., & Jalife, J. (2000). High-Frequency Periodic Sources Underlie Ventricular Fibrillation in the Isolated Rabbit Heart. Circulation Research, 86(1), 86-93. doi:10.1161/01.res.86.1.86

Mermin, N. D. (1979). The topological theory of defects in ordered media. Reviews of Modern Physics, 51(3), 591-648. doi:10.1103/revmodphys.51.591

Goryachev, A., & Kapral, R. (1996). Spiral Waves in Chaotic Systems. Physical Review Letters, 76(10), 1619-1622. doi:10.1103/physrevlett.76.1619

Rogers, J. M. (2004). Combined Phase Singularity and Wavefront Analysis for Optical Maps of Ventricular Fibrillation. IEEE Transactions on Biomedical Engineering, 51(1), 56-65. doi:10.1109/tbme.2003.820341

Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2

Narayan, S. M., Baykaner, T., Clopton, P., Schricker, A., Lalani, G. G., Krummen, D. E., … Miller, J. M. (2014). Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared With Trigger Ablation Alone. Journal of the American College of Cardiology, 63(17), 1761-1768. doi:10.1016/j.jacc.2014.02.543

MILLER, J. M., KOWAL, R. C., SWARUP, V., DAUBERT, J. P., DAOUD, E. G., DAY, J. D., … WHEELAN, K. R. (2014). Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry. Journal of Cardiovascular Electrophysiology, 25(9), 921-929. doi:10.1111/jce.12474

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem