- -

Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Mateu, Laura es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.contributor.author Ferrer Albero, Ana es_ES
dc.contributor.author Sebastián Aguilar, Rafael es_ES
dc.contributor.author Rodriguez Matas, José Félix es_ES
dc.contributor.author Jalife, José es_ES
dc.contributor.author Berenfeld, Omer es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.date.accessioned 2020-05-06T07:17:21Z
dc.date.available 2020-05-06T07:17:21Z
dc.date.issued 2018-03 es_ES
dc.identifier.issn 1553-734X es_ES
dc.identifier.uri http://hdl.handle.net/10251/142508
dc.description.abstract [EN] Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35¿94% of the simulation time, depending on the basket¿s position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures. es_ES
dc.description.sponsorship This work was partially supported by: Programa Prometeu de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana (www.edu.gva.es/fio/index_es.asp). Award Number: PROMETEU/2016/088 to JS;"Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2013-2016" from the Ministerio de Economia, Industria y Competitividad of Spain, Agencia Estatal de Investigacion (www.mineco.gob.es) and the European Commission (European Regional Development Funds - ERDF -FEDER) (ec.europa.eu/regional_policy/es/funding/erdf/) Award Number: DPI2016-75799-R to JS; "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientado a los Retos de la Sociedad" from the Ministerio de Economia y Competitividad of Spain, Agencia Estatal de Investigacion (www.mineco.gob.es) and the European Commission (European Regional Development Funds - ERDF -FEDER) (ec.europa.eu/regional_policy/es/funding/erdf/) Award Number: TIN2014-59932-JIN to RS; National Institutes of Health (https://www.nih.gov/grants-funding). Award Numbers: R01-HL122352, P01-HL039707, P01-HL087236 and R01-HL118304 to OB; and research grant from Medtronic, Inc. (http://www.medtronic.com/us-en/about/foundation.html) to OB and JJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Computational Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Mapping catheters es_ES
dc.subject Rotors es_ES
dc.subject Phase analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pcbi.1006017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-59932-JIN/ES/CARACTERIZACION Y DIAGNOSTICO NO INVASIVO DE ARRITMIAS CARDIACAS MEDIANTE MODELADO COMPUTACIONAL 3D ANATOMO-FUNCIONAL DEL CORAZON Y TORSO HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01HL122352/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01HL118304/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P01HL087236/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P01HL039707/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martínez-Mateu, L.; Romero Pérez, L.; Ferrer Albero, A.; Sebastián Aguilar, R.; Rodriguez Matas, JF.; Jalife, J.; Berenfeld, O.... (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLoS Computational Biology. 14(3):1-26. https://doi.org/10.1371/journal.pcbi.1006017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pcbi.1006017 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 29505583 es_ES
dc.relation.pasarela S\354345 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Medtronic, Estados Unidos es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A., … Wilber, D. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Journal of Interventional Cardiac Electrophysiology, 33(2), 171-257. doi:10.1007/s10840-012-9672-7 es_ES
dc.description.references January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., … Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation, 130(23). doi:10.1161/cir.0000000000000041 es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., … Alfieri, O. (2001). Atrial Electroanatomic Remodeling After Circumferential Radiofrequency Pulmonary Vein Ablation. Circulation, 104(21), 2539-2544. doi:10.1161/hc4601.098517 es_ES
dc.description.references Oral, H., Knight, B. P., Tada, H., Özaydın, M., Chugh, A., Hassan, S., … Morady, F. (2002). Pulmonary Vein Isolation for Paroxysmal and Persistent Atrial Fibrillation. Circulation, 105(9), 1077-1081. doi:10.1161/hc0902.104712 es_ES
dc.description.references Todd, D. M., Skanes, A. C., Guiraudon, G., Guiraudon, C., Krahn, A. D., Yee, R., & Klein, G. J. (2003). Role of the Posterior Left Atrium and Pulmonary Veins in Human Lone Atrial Fibrillation. Circulation, 108(25), 3108-3114. doi:10.1161/01.cir.0000104567.72914.bf es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Enyeart, M. W., & Rappel, W.-J. (2012). Computational Mapping Identifies Localized Mechanisms for Ablation of Atrial Fibrillation. PLoS ONE, 7(9), e46034. doi:10.1371/journal.pone.0046034 es_ES
dc.description.references Narayan, S. M., Shivkumar, K., Krummen, D. E., Miller, J. M., & Rappel, W.-J. (2013). Panoramic Electrophysiological Mapping but not Electrogram Morphology Identifies Stable Sources for Human Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 58-67. doi:10.1161/circep.111.977264 es_ES
dc.description.references Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194 es_ES
dc.description.references Yamazaki, M., Mironov, S., Taravant, C., Brec, J., Vaquero, L. M., Bandaru, K., … Kalifa, J. (2012). Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 94(1), 48-57. doi:10.1093/cvr/cvr357 es_ES
dc.description.references Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631 es_ES
dc.description.references Berenfeld, O., Zaitsev, A. V., Mironov, S. F., Pertsov, A. M., & Jalife, J. (2002). Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium. Circulation Research, 90(11), 1173-1180. doi:10.1161/01.res.0000022854.95998.5c es_ES
dc.description.references Hansen, B. J., Zhao, J., Csepe, T. A., Moore, B. T., Li, N., Jayne, L. A., … Fedorov, V. V. (2015). Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. European Heart Journal, 36(35), 2390-2401. doi:10.1093/eurheartj/ehv233 es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references Benharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., & Mandapati, R. (2015). Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(3), 554-561. doi:10.1161/circep.115.002721 es_ES
dc.description.references Sasaki, N., Okumura, Y., Watanabe, I., Madry, A., Hamano, Y., Nikaido, M., … Hirayama, A. (2016). Localized rotors and focal impulse sources within the left atrium in human atrial fibrillation: A phase analysis of contact basket catheter electrograms. Journal of Arrhythmia, 32(2), 141-144. doi:10.1016/j.joa.2015.11.010 es_ES
dc.description.references TAI, C.-T., & CHEN, S.-A. (2009). Noncontact Mapping of the Heart: How and When to Use. Journal of Cardiovascular Electrophysiology, 20(1), 123-126. doi:10.1111/j.1540-8167.2008.01302.x es_ES
dc.description.references Weerasooriya, R., Khairy, P., Litalien, J., Macle, L., Hocini, M., Sacher, F., … Jais, P. (2011). Catheter Ablation for Atrial Fibrillation. Journal of the American College of Cardiology, 57(2), 160-166. doi:10.1016/j.jacc.2010.05.061 es_ES
dc.description.references Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., … Shivkumar, K. (2016). Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience. Heart Rhythm, 13(3), 636-641. doi:10.1016/j.hrthm.2015.10.031 es_ES
dc.description.references Berntsen, R. F., Håland, T. F., Skårdal, R., & Holm, T. (2016). Focal impulse and rotor modulation as a stand-alone procedure for the treatment of paroxysmal atrial fibrillation: A within-patient controlled study with implanted cardiac monitoring. Heart Rhythm, 13(9), 1768-1774. doi:10.1016/j.hrthm.2016.04.016 es_ES
dc.description.references Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 es_ES
dc.description.references Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 es_ES
dc.description.references Feng, J., Yue, L., Wang, Z., & Nattel, S. (1998). Ionic Mechanisms of Regional Action Potential Heterogeneity in the Canine Right Atrium. Circulation Research, 83(5), 541-551. doi:10.1161/01.res.83.5.541 es_ES
dc.description.references Li, D., Zhang, L., Kneller, J., & Nattel, S. (2001). Potential Ionic Mechanism for Repolarization Differences Between Canine Right and Left Atrium. Circulation Research, 88(11), 1168-1175. doi:10.1161/hh1101.091266 es_ES
dc.description.references Cha, T.-J., Ehrlich, J. R., Zhang, L., Chartier, D., Leung, T. K., & Nattel, S. (2005). Atrial Tachycardia Remodeling of Pulmonary Vein Cardiomyocytes. Circulation, 111(6), 728-735. doi:10.1161/01.cir.0000155240.05251.d0 es_ES
dc.description.references Wang, Z. G., Pelletier, L. C., Talajic, M., & Nattel, S. (1990). Effects of flecainide and quinidine on human atrial action potentials. Role of rate-dependence and comparison with guinea pig, rabbit, and dog tissues. Circulation, 82(1), 274-283. doi:10.1161/01.cir.82.1.274 es_ES
dc.description.references Wang, Z., Fermini, B., & Nattel, S. (1993). Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circulation Research, 73(6), 1061-1076. doi:10.1161/01.res.73.6.1061 es_ES
dc.description.references Seemann, G., Höper, C., Sachse, F. B., Dössel, O., Holden, A. V., & Zhang, H. (2006). Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1843), 1465-1481. doi:10.1098/rsta.2006.1781 es_ES
dc.description.references Tobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship. PLoS ONE, 8(2), e50883. doi:10.1371/journal.pone.0050883 es_ES
dc.description.references Krueger, M. W., Dorn, A., Keller, D. U. J., Holmqvist, F., Carlson, J., Platonov, P. G., … Dössel, O. (2013). In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical & Biological Engineering & Computing, 51(10), 1105-1119. doi:10.1007/s11517-013-1090-1 es_ES
dc.description.references Colman, M. A. (2014). Mechanisms of Atrial Arrhythmias. Springer Theses. doi:10.1007/978-3-319-01643-6 es_ES
dc.description.references LEMERY, R., BIRNIE, D., TANG, A. S. L., GREEN, M., GOLLOB, M., HENDRY, M., & LAU, E. (2007). Normal Atrial Activation and Voltage During Sinus Rhythm in the Human Heart: An Endocardial and Epicardial Mapping Study in Patients with a History of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 18(4), 402-408. doi:10.1111/j.1540-8167.2007.00762.x es_ES
dc.description.references Caballero, R., de la Fuente, M. G., Gómez, R., Barana, A., Amorós, I., Dolz-Gaitón, P., … Delpón, E. (2010). In Humans, Chronic Atrial Fibrillation Decreases the Transient Outward Current and Ultrarapid Component of the Delayed Rectifier Current Differentially on Each Atria and Increases the Slow Component of the Delayed Rectifier Current in Both. Journal of the American College of Cardiology, 55(21), 2346-2354. doi:10.1016/j.jacc.2010.02.028 es_ES
dc.description.references Bosch, R. (1999). Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovascular Research, 44(1), 121-131. doi:10.1016/s0008-6363(99)00178-9 es_ES
dc.description.references Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-Type Ca2+Currents and Human Atrial Fibrillation. Circulation Research, 85(5), 428-436. doi:10.1161/01.res.85.5.428 es_ES
dc.description.references Workman, A. (2001). The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Research, 52(2), 226-235. doi:10.1016/s0008-6363(01)00380-7 es_ES
dc.description.references Dobrev, D., Graf, E., Wettwer, E., Himmel, H. M., Hála, O., Doerfel, C., … Ravens, U. (2001). Molecular Basis of Downregulation of G-Protein–Coupled Inward Rectifying K+Current (IK,ACh) in Chronic Human Atrial Fibrillation. Circulation, 104(21), 2551-2557. doi:10.1161/hc4601.099466 es_ES
dc.description.references Voigt, N., Trausch, A., Knaut, M., Matschke, K., Varró, A., Van Wagoner, D. R., … Dobrev, D. (2010). Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(5), 472-480. doi:10.1161/circep.110.954636 es_ES
dc.description.references Courtemanche, M. (1999). Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovascular Research, 42(2), 477-489. doi:10.1016/s0008-6363(99)00034-6 es_ES
dc.description.references Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., & Seemann, G. (2013). Benchmarking electrophysiological models of human atrial myocytes. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00487 es_ES
dc.description.references Grandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., & Bers, D. M. (2011). Human Atrial Action Potential and Ca2+Model. Circulation Research, 109(9), 1055-1066. doi:10.1161/circresaha.111.253955 es_ES
dc.description.references Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 es_ES
dc.description.references Colman, M. A., Aslanidi, O. V., Kharche, S., Boyett, M. R., Garratt, C., Hancox, J. C., & Zhang, H. (2013). Pro‐arrhythmogenic effects of atrial fibrillation‐induced electrical remodelling: insights from the three‐dimensional virtual human atria. The Journal of Physiology, 591(17), 4249-4272. doi:10.1113/jphysiol.2013.254987 es_ES
dc.description.references Wilhelm, M., Kirste, W., Kuly, S., Amann, K., Neuhuber, W., Weyand, M., … Garlichs, C. (2006). Atrial Distribution of Connexin 40 and 43 in Patients with Intermittent, Persistent, and Postoperative Atrial Fibrillation. Heart, Lung and Circulation, 15(1), 30-37. doi:10.1016/j.hlc.2005.06.011 es_ES
dc.description.references Van der Velden, H. (2000). Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovascular Research, 46(3), 476-486. doi:10.1016/s0008-6363(00)00026-2 es_ES
dc.description.references Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485 es_ES
dc.description.references Geselowitz, D. B., & Miller, W. T. (1983). A bidomain model for anisotropic cardiac muscle. Annals of Biomedical Engineering, 11(3-4), 191-206. doi:10.1007/bf02363286 es_ES
dc.description.references Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 es_ES
dc.description.references Warren, M., Guha, P. K., Berenfeld, O., Zaitsev, A., Anumonwo, J. M. B., Dhamoon, A. S., … Jalife, J. (2003). Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 14(6), 621-631. doi:10.1046/j.1540-8167.2003.03006.x es_ES
dc.description.references Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164 es_ES
dc.description.references Chen, J., Mandapati, R., Berenfeld, O., Skanes, A. C., & Jalife, J. (2000). High-Frequency Periodic Sources Underlie Ventricular Fibrillation in the Isolated Rabbit Heart. Circulation Research, 86(1), 86-93. doi:10.1161/01.res.86.1.86 es_ES
dc.description.references Mermin, N. D. (1979). The topological theory of defects in ordered media. Reviews of Modern Physics, 51(3), 591-648. doi:10.1103/revmodphys.51.591 es_ES
dc.description.references Goryachev, A., & Kapral, R. (1996). Spiral Waves in Chaotic Systems. Physical Review Letters, 76(10), 1619-1622. doi:10.1103/physrevlett.76.1619 es_ES
dc.description.references Rogers, J. M. (2004). Combined Phase Singularity and Wavefront Analysis for Optical Maps of Ventricular Fibrillation. IEEE Transactions on Biomedical Engineering, 51(1), 56-65. doi:10.1109/tbme.2003.820341 es_ES
dc.description.references Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 es_ES
dc.description.references Narayan, S. M., Baykaner, T., Clopton, P., Schricker, A., Lalani, G. G., Krummen, D. E., … Miller, J. M. (2014). Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared With Trigger Ablation Alone. Journal of the American College of Cardiology, 63(17), 1761-1768. doi:10.1016/j.jacc.2014.02.543 es_ES
dc.description.references MILLER, J. M., KOWAL, R. C., SWARUP, V., DAUBERT, J. P., DAOUD, E. G., DAY, J. D., … WHEELAN, K. R. (2014). Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry. Journal of Cardiovascular Electrophysiology, 25(9), 921-929. doi:10.1111/jce.12474 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem