- -

PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

Mostrar el registro completo del ítem

Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect. Water. 10(4):1-17. https://doi.org/10.3390/w10040529

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142514

Ficheros en el ítem

Metadatos del ítem

Título: PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect
Autor: Pérez-Sánchez, Modesto López Jiménez, Petra Amparo Ramos, Helena M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs) is of the utmost importance and necessary for the design and correct implementation of these new renewable ...[+]
Palabras clave: Energy recovery systems , Runaway conditions , Unsteady flow , Water hammer
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w10040529
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w10040529
Código del Proyecto:
info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/
Agradecimientos:
The authors wish to thank to the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014-2020 and CERIS (CEHIDRO-IST). This research was developed ...[+]
Tipo: Artículo

References

Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024

Moreno, M. A., Córcoles, J. I., Tarjuelo, J. M., & Ortega, J. F. (2010). Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosystems Engineering, 107(4), 349-363. doi:10.1016/j.biosystemseng.2010.09.009

Jiménez-Bello, M. A., Royuela, A., Manzano, J., Prats, A. G., & Martínez-Alzamora, F. (2015). Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agricultural Water Management, 149, 91-101. doi:10.1016/j.agwat.2014.10.026 [+]
Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024

Moreno, M. A., Córcoles, J. I., Tarjuelo, J. M., & Ortega, J. F. (2010). Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosystems Engineering, 107(4), 349-363. doi:10.1016/j.biosystemseng.2010.09.009

Jiménez-Bello, M. A., Royuela, A., Manzano, J., Prats, A. G., & Martínez-Alzamora, F. (2015). Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agricultural Water Management, 149, 91-101. doi:10.1016/j.agwat.2014.10.026

Cabrera, E., Cabrera, E., Cobacho, R., & Soriano, J. (2014). Towards an Energy Labelling of Pressurized Water Networks. Procedia Engineering, 70, 209-217. doi:10.1016/j.proeng.2014.02.024

Abbott, M., & Cohen, B. (2009). Productivity and efficiency in the water industry. Utilities Policy, 17(3-4), 233-244. doi:10.1016/j.jup.2009.05.001

Araujo, L. S., Ramos, H., & Coelho, S. T. (2006). Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resources Management, 20(1), 133-149. doi:10.1007/s11269-006-4635-3

Giugni, M., Fontana, N., & Ranucci, A. (2014). Optimal Location of PRVs and Turbines in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(9), 06014004. doi:10.1061/(asce)wr.1943-5452.0000418

Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097

Senior, J., Saenger, N., & Müller, G. (2010). New hydropower converters for very low-head differences. Journal of Hydraulic Research, 48(6), 703-714. doi:10.1080/00221686.2010.529301

Razan, J. I., Islam, R. S., Hasan, R., Hasan, S., & Islam, F. (2012). A Comprehensive Study of Micro-Hydropower Plant and Its Potential in Bangladesh. ISRN Renewable Energy, 2012, 1-10. doi:10.5402/2012/635396

Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shabara, H. M. (2015). Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews, 43, 40-50. doi:10.1016/j.rser.2014.11.045

Arriaga, M. (2010). Pump as turbine – A pico-hydro alternative in Lao People’s Democratic Republic. Renewable Energy, 35(5), 1109-1115. doi:10.1016/j.renene.2009.08.022

Pérez-Sánchez, M., López-Jiménez, P. A., & Ramos, H. M. (2017). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management, 32(3), 829-844. doi:10.1007/s11269-017-1841-0

Carravetta, A., Fecarotta, O., Del Giudice, G., & Ramos, H. (2014). Energy Recovery in Water Systems by PATs: A Comparisons among the Different Installation Schemes. Procedia Engineering, 70, 275-284. doi:10.1016/j.proeng.2014.02.031

Small Scale Hydropower: Generator Analysis and Optimization for Water Supply Systems http://www.ep.liu.se/ecp_article/index.en.aspx?issue=57;vol=6;article=2

Butera, I., & Balestra, R. (2015). Estimation of the hydropower potential of irrigation networks. Renewable and Sustainable Energy Reviews, 48, 140-151. doi:10.1016/j.rser.2015.03.046

Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411

Fecarotta, O., Aricò, C., Carravetta, A., Martino, R., & Ramos, H. M. (2014). Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resources Management, 29(3), 699-714. doi:10.1007/s11269-014-0836-3

Fecarotta, O., Carravetta, A., Ramos, H. M., & Martino, R. (2016). An improved affinity model to enhance variable operating strategy for pumps used as turbines. Journal of Hydraulic Research, 54(3), 332-341. doi:10.1080/00221686.2016.1141804

Sitzenfrei, R., Berger, D., & Rauch, W. (2015). Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures. Urban Water Journal, 15(3), 183-191. doi:10.1080/1573062x.2015.1112410

De Marchis, M., Milici, B., Volpe, R., & Messineo, A. (2016). Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis. Energies, 9(11), 877. doi:10.3390/en9110877

Samora, I., Manso, P., Franca, M., Schleiss, A., & Ramos, H. (2016). Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg. Water, 8(8), 344. doi:10.3390/w8080344

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234

Corcoran, L., McNabola, A., & Coughlan, P. (2016). Predicting and quantifying the effect of variations in long-term water demand on micro-hydropower energy recovery in water supply networks. Urban Water Journal, 14(7), 676-684. doi:10.1080/1573062x.2016.1236136

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. A. (2017). Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water, 9(10), 799. doi:10.3390/w9100799

McNabola, A., Coughlan, P., Corcoran, L., Power, C., Prysor Williams, A., Harris, I., … Styles, D. (2013). Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy, 16(1), 168-183. doi:10.2166/wp.2013.164

Subani, N., & Amin, N. (2015). Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture. Abstract and Applied Analysis, 2015, 1-12. doi:10.1155/2015/510675

Ramos, H., Covas, D., Borga, A., & Loureiro, D. (2004). Surge damping analysis in pipe systems: modelling and experiments. Journal of Hydraulic Research, 42(4), 413-425. doi:10.1080/00221686.2004.9728407

Ramos, H., & Almeida, A. B. (2001). Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes. Journal of Hydraulic Research, 39(4), 429-436. doi:10.1080/00221680109499847

Ramos, H., & Beta⁁mio de Almeida, A. (2002). Parametric Analysis of Water-Hammer Effects in Small Hydro Schemes. Journal of Hydraulic Engineering, 128(7), 689-696. doi:10.1061/(asce)0733-9429(2002)128:7(689)

Ramos, H. M., Simão, M., & Borga, A. (2013). Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2), 109-117. doi:10.1061/(asce)ey.1943-7897.0000096

De Marchis, M., Fontanazza, C. M., Freni, G., Messineo, A., Milici, B., Napoli, E., … Scopa, A. (2014). Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Procedia Engineering, 70, 439-448. doi:10.1016/j.proeng.2014.02.049

Allievi, 2010 www.allievi.net

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem