- -

PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Sánchez, Modesto es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.contributor.author Ramos, Helena M. es_ES
dc.date.accessioned 2020-05-06T07:17:50Z
dc.date.available 2020-05-06T07:17:50Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142514
dc.description.abstract [EN] The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs) is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation. es_ES
dc.description.sponsorship The authors wish to thank to the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014-2020 and CERIS (CEHIDRO-IST). This research was developed in the research stay of the first author in the hydraulic lab of CERIS-IST in January 2018 called "MAXIMIZATION OF THE GLOBAL EFFICIENCY IN PATs IN LABORATORY FACILITY". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy recovery systems es_ES
dc.subject Runaway conditions es_ES
dc.subject Unsteady flow es_ES
dc.subject Water hammer es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w10040529 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect. Water. 10(4):1-17. https://doi.org/10.3390/w10040529 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w10040529 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\361254 es_ES
dc.contributor.funder Interreg es_ES
dc.description.references Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024 es_ES
dc.description.references Moreno, M. A., Córcoles, J. I., Tarjuelo, J. M., & Ortega, J. F. (2010). Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosystems Engineering, 107(4), 349-363. doi:10.1016/j.biosystemseng.2010.09.009 es_ES
dc.description.references Jiménez-Bello, M. A., Royuela, A., Manzano, J., Prats, A. G., & Martínez-Alzamora, F. (2015). Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agricultural Water Management, 149, 91-101. doi:10.1016/j.agwat.2014.10.026 es_ES
dc.description.references Cabrera, E., Cabrera, E., Cobacho, R., & Soriano, J. (2014). Towards an Energy Labelling of Pressurized Water Networks. Procedia Engineering, 70, 209-217. doi:10.1016/j.proeng.2014.02.024 es_ES
dc.description.references Abbott, M., & Cohen, B. (2009). Productivity and efficiency in the water industry. Utilities Policy, 17(3-4), 233-244. doi:10.1016/j.jup.2009.05.001 es_ES
dc.description.references Araujo, L. S., Ramos, H., & Coelho, S. T. (2006). Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resources Management, 20(1), 133-149. doi:10.1007/s11269-006-4635-3 es_ES
dc.description.references Giugni, M., Fontana, N., & Ranucci, A. (2014). Optimal Location of PRVs and Turbines in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(9), 06014004. doi:10.1061/(asce)wr.1943-5452.0000418 es_ES
dc.description.references Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9 es_ES
dc.description.references Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097 es_ES
dc.description.references Senior, J., Saenger, N., & Müller, G. (2010). New hydropower converters for very low-head differences. Journal of Hydraulic Research, 48(6), 703-714. doi:10.1080/00221686.2010.529301 es_ES
dc.description.references Razan, J. I., Islam, R. S., Hasan, R., Hasan, S., & Islam, F. (2012). A Comprehensive Study of Micro-Hydropower Plant and Its Potential in Bangladesh. ISRN Renewable Energy, 2012, 1-10. doi:10.5402/2012/635396 es_ES
dc.description.references Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shabara, H. M. (2015). Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews, 43, 40-50. doi:10.1016/j.rser.2014.11.045 es_ES
dc.description.references Arriaga, M. (2010). Pump as turbine – A pico-hydro alternative in Lao People’s Democratic Republic. Renewable Energy, 35(5), 1109-1115. doi:10.1016/j.renene.2009.08.022 es_ES
dc.description.references Pérez-Sánchez, M., López-Jiménez, P. A., & Ramos, H. M. (2017). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management, 32(3), 829-844. doi:10.1007/s11269-017-1841-0 es_ES
dc.description.references Carravetta, A., Fecarotta, O., Del Giudice, G., & Ramos, H. (2014). Energy Recovery in Water Systems by PATs: A Comparisons among the Different Installation Schemes. Procedia Engineering, 70, 275-284. doi:10.1016/j.proeng.2014.02.031 es_ES
dc.description.references Small Scale Hydropower: Generator Analysis and Optimization for Water Supply Systems http://www.ep.liu.se/ecp_article/index.en.aspx?issue=57;vol=6;article=2 es_ES
dc.description.references Butera, I., & Balestra, R. (2015). Estimation of the hydropower potential of irrigation networks. Renewable and Sustainable Energy Reviews, 48, 140-151. doi:10.1016/j.rser.2015.03.046 es_ES
dc.description.references Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411 es_ES
dc.description.references Fecarotta, O., Aricò, C., Carravetta, A., Martino, R., & Ramos, H. M. (2014). Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resources Management, 29(3), 699-714. doi:10.1007/s11269-014-0836-3 es_ES
dc.description.references Fecarotta, O., Carravetta, A., Ramos, H. M., & Martino, R. (2016). An improved affinity model to enhance variable operating strategy for pumps used as turbines. Journal of Hydraulic Research, 54(3), 332-341. doi:10.1080/00221686.2016.1141804 es_ES
dc.description.references Sitzenfrei, R., Berger, D., & Rauch, W. (2015). Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures. Urban Water Journal, 15(3), 183-191. doi:10.1080/1573062x.2015.1112410 es_ES
dc.description.references De Marchis, M., Milici, B., Volpe, R., & Messineo, A. (2016). Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis. Energies, 9(11), 877. doi:10.3390/en9110877 es_ES
dc.description.references Samora, I., Manso, P., Franca, M., Schleiss, A., & Ramos, H. (2016). Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg. Water, 8(8), 344. doi:10.3390/w8080344 es_ES
dc.description.references Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234 es_ES
dc.description.references Corcoran, L., McNabola, A., & Coughlan, P. (2016). Predicting and quantifying the effect of variations in long-term water demand on micro-hydropower energy recovery in water supply networks. Urban Water Journal, 14(7), 676-684. doi:10.1080/1573062x.2016.1236136 es_ES
dc.description.references Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. A. (2017). Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water, 9(10), 799. doi:10.3390/w9100799 es_ES
dc.description.references McNabola, A., Coughlan, P., Corcoran, L., Power, C., Prysor Williams, A., Harris, I., … Styles, D. (2013). Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy, 16(1), 168-183. doi:10.2166/wp.2013.164 es_ES
dc.description.references Subani, N., & Amin, N. (2015). Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture. Abstract and Applied Analysis, 2015, 1-12. doi:10.1155/2015/510675 es_ES
dc.description.references Ramos, H., Covas, D., Borga, A., & Loureiro, D. (2004). Surge damping analysis in pipe systems: modelling and experiments. Journal of Hydraulic Research, 42(4), 413-425. doi:10.1080/00221686.2004.9728407 es_ES
dc.description.references Ramos, H., & Almeida, A. B. (2001). Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes. Journal of Hydraulic Research, 39(4), 429-436. doi:10.1080/00221680109499847 es_ES
dc.description.references Ramos, H., & Beta⁁mio de Almeida, A. (2002). Parametric Analysis of Water-Hammer Effects in Small Hydro Schemes. Journal of Hydraulic Engineering, 128(7), 689-696. doi:10.1061/(asce)0733-9429(2002)128:7(689) es_ES
dc.description.references Ramos, H. M., Simão, M., & Borga, A. (2013). Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2), 109-117. doi:10.1061/(asce)ey.1943-7897.0000096 es_ES
dc.description.references De Marchis, M., Fontanazza, C. M., Freni, G., Messineo, A., Milici, B., Napoli, E., … Scopa, A. (2014). Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Procedia Engineering, 70, 439-448. doi:10.1016/j.proeng.2014.02.049 es_ES
dc.description.references Allievi, 2010 www.allievi.net es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem