Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Sánchez, Modesto | es_ES |
dc.contributor.author | López Jiménez, Petra Amparo | es_ES |
dc.contributor.author | Ramos, Helena M. | es_ES |
dc.date.accessioned | 2020-05-06T07:17:50Z | |
dc.date.available | 2020-05-06T07:17:50Z | |
dc.date.issued | 2018-04 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142514 | |
dc.description.abstract | [EN] The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs) is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation. | es_ES |
dc.description.sponsorship | The authors wish to thank to the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014-2020 and CERIS (CEHIDRO-IST). This research was developed in the research stay of the first author in the hydraulic lab of CERIS-IST in January 2018 called "MAXIMIZATION OF THE GLOBAL EFFICIENCY IN PATs IN LABORATORY FACILITY". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Energy recovery systems | es_ES |
dc.subject | Runaway conditions | es_ES |
dc.subject | Unsteady flow | es_ES |
dc.subject | Water hammer | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w10040529 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect. Water. 10(4):1-17. https://doi.org/10.3390/w10040529 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w10040529 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\361254 | es_ES |
dc.contributor.funder | Interreg | es_ES |
dc.description.references | Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024 | es_ES |
dc.description.references | Moreno, M. A., Córcoles, J. I., Tarjuelo, J. M., & Ortega, J. F. (2010). Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosystems Engineering, 107(4), 349-363. doi:10.1016/j.biosystemseng.2010.09.009 | es_ES |
dc.description.references | Jiménez-Bello, M. A., Royuela, A., Manzano, J., Prats, A. G., & Martínez-Alzamora, F. (2015). Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agricultural Water Management, 149, 91-101. doi:10.1016/j.agwat.2014.10.026 | es_ES |
dc.description.references | Cabrera, E., Cabrera, E., Cobacho, R., & Soriano, J. (2014). Towards an Energy Labelling of Pressurized Water Networks. Procedia Engineering, 70, 209-217. doi:10.1016/j.proeng.2014.02.024 | es_ES |
dc.description.references | Abbott, M., & Cohen, B. (2009). Productivity and efficiency in the water industry. Utilities Policy, 17(3-4), 233-244. doi:10.1016/j.jup.2009.05.001 | es_ES |
dc.description.references | Araujo, L. S., Ramos, H., & Coelho, S. T. (2006). Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resources Management, 20(1), 133-149. doi:10.1007/s11269-006-4635-3 | es_ES |
dc.description.references | Giugni, M., Fontana, N., & Ranucci, A. (2014). Optimal Location of PRVs and Turbines in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(9), 06014004. doi:10.1061/(asce)wr.1943-5452.0000418 | es_ES |
dc.description.references | Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097 | es_ES |
dc.description.references | Senior, J., Saenger, N., & Müller, G. (2010). New hydropower converters for very low-head differences. Journal of Hydraulic Research, 48(6), 703-714. doi:10.1080/00221686.2010.529301 | es_ES |
dc.description.references | Razan, J. I., Islam, R. S., Hasan, R., Hasan, S., & Islam, F. (2012). A Comprehensive Study of Micro-Hydropower Plant and Its Potential in Bangladesh. ISRN Renewable Energy, 2012, 1-10. doi:10.5402/2012/635396 | es_ES |
dc.description.references | Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shabara, H. M. (2015). Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renewable and Sustainable Energy Reviews, 43, 40-50. doi:10.1016/j.rser.2014.11.045 | es_ES |
dc.description.references | Arriaga, M. (2010). Pump as turbine – A pico-hydro alternative in Lao People’s Democratic Republic. Renewable Energy, 35(5), 1109-1115. doi:10.1016/j.renene.2009.08.022 | es_ES |
dc.description.references | Pérez-Sánchez, M., López-Jiménez, P. A., & Ramos, H. M. (2017). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management, 32(3), 829-844. doi:10.1007/s11269-017-1841-0 | es_ES |
dc.description.references | Carravetta, A., Fecarotta, O., Del Giudice, G., & Ramos, H. (2014). Energy Recovery in Water Systems by PATs: A Comparisons among the Different Installation Schemes. Procedia Engineering, 70, 275-284. doi:10.1016/j.proeng.2014.02.031 | es_ES |
dc.description.references | Small Scale Hydropower: Generator Analysis and Optimization for Water Supply Systems http://www.ep.liu.se/ecp_article/index.en.aspx?issue=57;vol=6;article=2 | es_ES |
dc.description.references | Butera, I., & Balestra, R. (2015). Estimation of the hydropower potential of irrigation networks. Renewable and Sustainable Energy Reviews, 48, 140-151. doi:10.1016/j.rser.2015.03.046 | es_ES |
dc.description.references | Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411 | es_ES |
dc.description.references | Fecarotta, O., Aricò, C., Carravetta, A., Martino, R., & Ramos, H. M. (2014). Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resources Management, 29(3), 699-714. doi:10.1007/s11269-014-0836-3 | es_ES |
dc.description.references | Fecarotta, O., Carravetta, A., Ramos, H. M., & Martino, R. (2016). An improved affinity model to enhance variable operating strategy for pumps used as turbines. Journal of Hydraulic Research, 54(3), 332-341. doi:10.1080/00221686.2016.1141804 | es_ES |
dc.description.references | Sitzenfrei, R., Berger, D., & Rauch, W. (2015). Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures. Urban Water Journal, 15(3), 183-191. doi:10.1080/1573062x.2015.1112410 | es_ES |
dc.description.references | De Marchis, M., Milici, B., Volpe, R., & Messineo, A. (2016). Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis. Energies, 9(11), 877. doi:10.3390/en9110877 | es_ES |
dc.description.references | Samora, I., Manso, P., Franca, M., Schleiss, A., & Ramos, H. (2016). Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg. Water, 8(8), 344. doi:10.3390/w8080344 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234 | es_ES |
dc.description.references | Corcoran, L., McNabola, A., & Coughlan, P. (2016). Predicting and quantifying the effect of variations in long-term water demand on micro-hydropower energy recovery in water supply networks. Urban Water Journal, 14(7), 676-684. doi:10.1080/1573062x.2016.1236136 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. A. (2017). Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water, 9(10), 799. doi:10.3390/w9100799 | es_ES |
dc.description.references | McNabola, A., Coughlan, P., Corcoran, L., Power, C., Prysor Williams, A., Harris, I., … Styles, D. (2013). Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy, 16(1), 168-183. doi:10.2166/wp.2013.164 | es_ES |
dc.description.references | Subani, N., & Amin, N. (2015). Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture. Abstract and Applied Analysis, 2015, 1-12. doi:10.1155/2015/510675 | es_ES |
dc.description.references | Ramos, H., Covas, D., Borga, A., & Loureiro, D. (2004). Surge damping analysis in pipe systems: modelling and experiments. Journal of Hydraulic Research, 42(4), 413-425. doi:10.1080/00221686.2004.9728407 | es_ES |
dc.description.references | Ramos, H., & Almeida, A. B. (2001). Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes. Journal of Hydraulic Research, 39(4), 429-436. doi:10.1080/00221680109499847 | es_ES |
dc.description.references | Ramos, H., & Beta⁁mio de Almeida, A. (2002). Parametric Analysis of Water-Hammer Effects in Small Hydro Schemes. Journal of Hydraulic Engineering, 128(7), 689-696. doi:10.1061/(asce)0733-9429(2002)128:7(689) | es_ES |
dc.description.references | Ramos, H. M., Simão, M., & Borga, A. (2013). Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2), 109-117. doi:10.1061/(asce)ey.1943-7897.0000096 | es_ES |
dc.description.references | De Marchis, M., Fontanazza, C. M., Freni, G., Messineo, A., Milici, B., Napoli, E., … Scopa, A. (2014). Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Procedia Engineering, 70, 439-448. doi:10.1016/j.proeng.2014.02.049 | es_ES |
dc.description.references | Allievi, 2010 www.allievi.net | es_ES |