- -

Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant

Show full item record

Gramazio, P.; Lerma Lerma, MD.; Villanueva-Párraga, G.; Vilanova Navarro, S.; García-Fortea, E.; Mangino, G.; Figás-Moreno, MDR.... (2019). Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Annals of Applied Biology. 175(2):172-183. https://doi.org/10.1111/aab.12527

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142679

Files in this item

Item Metadata

Title: Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant
Author: Gramazio, Pietro Lerma Lerma, María Dolores Villanueva-Párraga, Gloria Vilanova Navarro, Santiago García-Fortea, Edgar Mangino, Giulio Figás-Moreno, María Del Rosario Arrones-Olmo, Andrea Alonso-Martín, David San Bautista Primo, Alberto Soler Aleixandre, Salvador Prohens Tomás, Jaime Plazas Ávila, María de la O
UPV Unit: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
Abstract:
[EN] Tomato chlorotic dwarf viroid (TCDVd) is a pospiviroid that causes severe disease symptoms in tomato. TCDVd is also naturally found in other crops and plants, in most occasions being asymptomatic. Apart from the natural ...[+]
Subjects: Mechanical transmission , Pollen transmission , RT-PCR,seed disinfection , Seed transmission , Solanum melongena , TCDVd , Viroid sequence
Copyrigths: Reserva de todos los derechos
Source:
Annals of Applied Biology. (issn: 0003-4746 )
DOI: 10.1111/aab.12527
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/aab.12527
Project ID:
info:eu-repo/grantAgreement/JSPS//FY2019/
...[+]
info:eu-repo/grantAgreement/JSPS//FY2019/
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/UPV//PAID-10-18/
info:eu-repo/grantAgreement/UPV//PAID-01-16/
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F012/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/
info:eu-repo/grantAgreement/MECD//FPU17%2F02389/
[-]
Description: "This is the peer reviewed version of the following article: Gramazio P, Lerma MD, Villanueva G, et al. Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Ann Appl Biol. 2019;175:172 183. https://doi.org/10.1111/aab.12527, which has been published in final form at https://doi.org/10.1111/aab.12527. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
P.G. is grateful to Universitat Politècnica de València and to Japan Society for the Promotion of Science for their respective postdoctoral grants (PAID-10-18 and FY2019 JSPS Postdoctoral Fellowship for Research in Japan ...[+]
Type: Artículo

References

Bakker, D., Bruinsma, M., Dekter, R. W., Toonen, M. A. J., Verhoeven, J. T. J., & Koenraadt, H. M. S. (2015). Detection of PSTVd and TCDVd in seeds of tomato using real-time RT-PCR. EPPO Bulletin, 45(1), 14-21. doi:10.1111/epp.12195

Barba, M., & James, D. (2017). Quarantine and Certification for Viroids and Viroid Diseases. Viroids and Satellites, 415-424. doi:10.1016/b978-0-12-801498-1.00039-5

Broadbent, L. (1976). Epidemiology and Control of Tomato Mosaic Virus. Annual Review of Phytopathology, 14(1), 75-96. doi:10.1146/annurev.py.14.090176.000451 [+]
Bakker, D., Bruinsma, M., Dekter, R. W., Toonen, M. A. J., Verhoeven, J. T. J., & Koenraadt, H. M. S. (2015). Detection of PSTVd and TCDVd in seeds of tomato using real-time RT-PCR. EPPO Bulletin, 45(1), 14-21. doi:10.1111/epp.12195

Barba, M., & James, D. (2017). Quarantine and Certification for Viroids and Viroid Diseases. Viroids and Satellites, 415-424. doi:10.1016/b978-0-12-801498-1.00039-5

Broadbent, L. (1976). Epidemiology and Control of Tomato Mosaic Virus. Annual Review of Phytopathology, 14(1), 75-96. doi:10.1146/annurev.py.14.090176.000451

Candresse, T., Marais, A., Tassus, X., Suhard, P., Renaudin, I., Leguay, A., … Blancard, D. (2010). First Report of Tomato chlorotic dwarf viroid in Tomato in France. Plant Disease, 94(5), 633-633. doi:10.1094/pdis-94-5-0633b

Candresse, T., Verhoeven, J. T. J., Stancanelli, G., Hammond, R. W., & Winter, S. (2017). Other Pospiviroids Infecting Solanaceous Plants. Viroids and Satellites, 159-168. doi:10.1016/b978-0-12-801498-1.00015-2

Červená, G., Nečekalová, J., Mikulková, H., Levkaničová, Z., Mertelík, J., Kloudová, K., … Ptáček, J. (2011). VIROIDS ON PETUNIA AND OTHER SOLANACEOUS CROPS IN THE CZECH REPUBLIC. Acta Horticulturae, (901), 35-40. doi:10.17660/actahortic.2011.901.3

Constable F. &Moran J.(1996).PCR protocols for the detection of chrysanthemum stunt and potato spindle tuber viroids. Final Report for the Horticultural Research and Development Corporation Project number PT410. Victoria Australia: Department of Natural Resources and Environment.

Daròs, J.-A. (2017). Eggplant Latent Viroid. Viroids and Satellites, 339-344. doi:10.1016/b978-0-12-801498-1.00032-2

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6

FAGOAGA, C., & DURAN-VILA, N. (1996). Naturally occurring variants of citrus exocortis viroid in vegetable crops. Plant Pathology, 45(1), 45-53. doi:10.1046/j.1365-3059.1996.d01-104.x

Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Fox, A., Daly, M., Nixon, T., Brurberg, M. B., Blystad, D.-R., Harju, V., … Adams, I. P. (2013). First report ofTomato chlorotic dwarf viroid(TCDVd) in tomato in Norway and subsequent eradication. New Disease Reports, 27, 8. doi:10.5197/j.2044-0588.2013.027.008

Giguère, T., Raj Adkar-Purushothama, C., & Perreault, J.-P. (2014). Comprehensive Secondary Structure Elucidation of Four Genera of the Family Pospiviroidae. PLoS ONE, 9(6), e98655. doi:10.1371/journal.pone.0098655

Giguère, T., & Perreault, J.-P. (2017). Classification of the Pospiviroidae based on their structural hallmarks. PLOS ONE, 12(8), e0182536. doi:10.1371/journal.pone.0182536

Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., & Hofacker, I. L. (2008). The Vienna RNA Websuite. Nucleic Acids Research, 36(Web Server), W70-W74. doi:10.1093/nar/gkn188

Hadidi, A., Flores, R., Randles, J., & Semancik, J. (2003). Viroids. doi:10.1071/9780643069855

Hailstones, D. L., Tesoriero, L. A., Terras, M. A., & Dephoff, C. (2003). Detection and eradication of Potato spindle tuber viroid in tomatoes in commercial production in New South Wales, Australia. Australasian Plant Pathology, 32(2), 317. doi:10.1071/ap03005

Hammond, R. W. (2017). Economic Significance of Viroids in Vegetable and Field Crops. Viroids and Satellites, 5-13. doi:10.1016/b978-0-12-801498-1.00001-2

Hammond, R. W. (2017). Seed, Pollen, and Insect Transmission of Viroids. Viroids and Satellites, 521-530. doi:10.1016/b978-0-12-801498-1.00048-6

Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027

James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57(2), 400-400. doi:10.1111/j.1365-3059.2007.01727.x

Keese, P., & Symons, R. H. (1985). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, 82(14), 4582-4586. doi:10.1073/pnas.82.14.4582

Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006

Kryczyński, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of Three Viroids Through Seed and Pollen of Tomato Plants. Journal of Phytopathology, 121(1), 51-57. doi:10.1111/j.1439-0434.1988.tb00952.x

Li, R., Baysal-Gurel, F., Abdo, Z., Miller, S. A., & Ling, K.-S. (2015). Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virology Journal, 12(1), 5. doi:10.1186/s12985-014-0237-5

Ling, K.-S. (2017). Decontamination Measures to Prevent Mechanical Transmission of Viroids. Viroids and Satellites, 437-445. doi:10.1016/b978-0-12-801498-1.00041-3

Ling, K.-S., Verhoeven, J. T. J., Singh, R. P., & Brown, J. K. (2009). First Report of Tomato chlorotic dwarf viroid in Greenhouse Tomatoes in Arizona. Plant Disease, 93(10), 1075-1075. doi:10.1094/pdis-93-10-1075b

Ling, K.-S., & Zhang, W. (2009). First Report of a Natural Infection by Mexican Papita Viroid and Tomato Chlorotic Dwarf Viroid on Greenhouse Tomatoes in Mexico. Plant Disease, 93(11), 1216-1216. doi:10.1094/pdis-93-11-1216a

Mackie, A. E., Coutts, B. A., Barbetti, M. J., Rodoni, B. C., McKirdy, S. J., & Jones, R. A. C. (2015). Potato spindle tuber viroid: Stability on Common Surfaces and Inactivation With Disinfectants. Plant Disease, 99(6), 770-775. doi:10.1094/pdis-09-14-0929-re

Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74(2), 182-184. doi:10.1007/s10327-008-0076-6

Matsushita, Y., & Tsuda, S. (2014). Host ranges of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 141(1), 193-197. doi:10.1007/s10658-014-0518-2

Matsushita, Y., & Tsuda, S. (2016). Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 145(4), 1007-1011. doi:10.1007/s10658-016-0868-z

Matsushita, Y., Usugi, T., & Tsuda, S. (2009). Host range and properties of Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 124(2), 349-352. doi:10.1007/s10658-008-9416-9

Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130(4), 441-447. doi:10.1007/s10658-011-9766-6

Matsuura, S., Matsushita, Y., Kozuka, R., Shimizu, S., & Tsuda, S. (2009). Transmission of Tomato chlorotic dwarf viroid by bumblebees (Bombus ignitus) in tomato plants. European Journal of Plant Pathology, 126(1), 111-115. doi:10.1007/s10658-009-9515-2

Matsuura, S., Matsushita, Y., Usugi, T., & Tsuda, S. (2010). Disinfection of Tomato chlorotic dwarf viroid by chemical and biological agents. Crop Protection, 29(10), 1157-1161. doi:10.1016/j.cropro.2010.05.018

Minoia, S., Navarro, B., Delgado, S., Serio, F. D., & Flores, R. (2015). Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Research, 43(4), 2313-2325. doi:10.1093/nar/gkv034

Nie, X. (2012). Analysis of Sequence Polymorphism and Population Structure of Tomato chlorotic dwarf viroid and Potato spindle tuber viroid in Viroid-Infected Tomato Plants. Viruses, 4(6), 940-953. doi:10.3390/v4060940

Palukaitis, P. (1987). Potato spindle tuber viroid: Investigation of the long-distance, intra-plant transport route. Virology, 158(1), 239-241. doi:10.1016/0042-6822(87)90260-1

PROHENS, J., SOLER, S., & NUEZ, F. (1999). The effects of thermotherapy and sodium hypochlorite treatments on pepino seed germination, a crucial step in breeding programmes. Annals of Applied Biology, 134(3), 299-305. doi:10.1111/j.1744-7348.1999.tb05268.x

Shiraishi, T., Maejima, K., Komatsu, K., Hashimoto, M., Okano, Y., Kitazawa, Y., … Namba, S. (2013). First report of tomato chlorotic dwarf viroid isolated from symptomless petunia plants (Petunia spp.) in Japan. Journal of General Plant Pathology, 79(3), 214-216. doi:10.1007/s10327-013-0444-8

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75

Singh, R. P. (1992). Detection of Potato Spindle Tuber Viroid in the Pollen and Various Parts of Potato Plant Pollinated with Viroid-Infected Pollen. Plant Disease, 76(9), 951. doi:10.1094/pd-76-0951

Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids The GenBank accession number of the sequence reported in this paper is AF162131. Journal of General Virology, 80(11), 2823-2828. doi:10.1099/0022-1317-80-11-2823

Singh, R. P., & Dilworth, A. D. (2008). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123(1), 111-116. doi:10.1007/s10658-008-9344-8

Singh, R. P., Dilworth, A. D., Ao, X., Singh, M., & Misra, S. (2009). Molecular and biological characterization of a severe isolate of Tomato chlorotic dwarf viroid containing a novel terminal right (TR) domain sequence. European Journal of Plant Pathology, 127(1), 63-72. doi:10.1007/s10658-009-9571-7

Škorić, D. (2017). Viroid Biology. Viroids and Satellites, 53-61. doi:10.1016/b978-0-12-801498-1.00005-x

Van Bogaert, N., Smagghe, G., Maes, M., De Backer, M., & De Jonghe, K. (2017). Phylogeny of five predominant pospiviroid species in Belgium. European Journal of Plant Pathology, 149(1), 25-33. doi:10.1007/s10658-017-1158-0

Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources ofPotato spindle tuber viroidinoculum for tomato. Plant Pathology, 59(1), 3-12. doi:10.1111/j.1365-3059.2009.02173.x

Verhoeven, J. T. J., Hammond, R. W., & Stancanelli, G. (2017). Economic Significance of Viroids in Ornamental Crops. Viroids and Satellites, 27-38. doi:10.1016/b978-0-12-801498-1.00003-6

Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5

Võ, T. T., Dehne, H.-W., & Hamacher, J. (2018). Transmission of Tomato chlorotic dwarf viroid by Myzus persicae assisted by Potato leafroll virus. Journal of Plant Diseases and Protection, 125(3), 259-266. doi:10.1007/s41348-018-0151-y

Wassenegger, M., Spieker, R. L., Thalmeir, S., Gast, F.-U., Riedel, L., & Sänger, H. L. (1996). A Single Nucleotide Substitution Converts Potato Spindle Tuber Viroid (PSTVd) from a Noninfectious to an Infectious RNA for Nicotiana tabacum. Virology, 226(2), 191-197. doi:10.1006/viro.1996.0646

Yanagisawa, H., & Matsushita, Y. (2018). Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroid-infected pollen. Virology, 516, 258-264. doi:10.1016/j.virol.2018.01.023

Yanagisawa, H., Sano, T., Hase, S., & Matsushita, Y. (2019). Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology, 526, 22-31. doi:10.1016/j.virol.2018.09.021

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record