Mostrar el registro sencillo del ítem
dc.contributor.author | Gramazio, Pietro | es_ES |
dc.contributor.author | Lerma Lerma, María Dolores | es_ES |
dc.contributor.author | Villanueva-Párraga, Gloria | es_ES |
dc.contributor.author | Vilanova Navarro, Santiago | es_ES |
dc.contributor.author | García-Fortea, Edgar | es_ES |
dc.contributor.author | Mangino, Giulio | es_ES |
dc.contributor.author | Figás-Moreno, María Del Rosario | es_ES |
dc.contributor.author | Arrones-Olmo, Andrea | es_ES |
dc.contributor.author | Alonso-Martín, David | es_ES |
dc.contributor.author | San Bautista Primo, Alberto | es_ES |
dc.contributor.author | Soler Aleixandre, Salvador | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.date.accessioned | 2020-05-07T05:57:02Z | |
dc.date.available | 2020-05-07T05:57:02Z | |
dc.date.issued | 2019-09 | es_ES |
dc.identifier.issn | 0003-4746 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142679 | |
dc.description | "This is the peer reviewed version of the following article: Gramazio P, Lerma MD, Villanueva G, et al. Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Ann Appl Biol. 2019;175:172 183. https://doi.org/10.1111/aab.12527, which has been published in final form at https://doi.org/10.1111/aab.12527. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Tomato chlorotic dwarf viroid (TCDVd) is a pospiviroid that causes severe disease symptoms in tomato. TCDVd is also naturally found in other crops and plants, in most occasions being asymptomatic. Apart from the natural hosts reported up to now, artificial inoculations have revealed that TCDVd can infect other plants, including eggplant (Solanum melongena). In a screening of seedlings of eggplant from a breeding programme we detected a pospiviroid, which we identified as TCDVd, representing the first report of natural infection of eggplant by TCDVd. The new TCDVd isolate of eggplant was detected by reverse transcription polymerase chain reaction (RT¿PCR) using primers TG21/CT20, initially designed to detect potato spindle tuber viroid. The new isolate sequence is close to a Brugmansia sanguinea isolate of TCDVd from the Netherlands, and most of the nucleotidic changes with respect to this isolate and to the reference genome sequence of TCDVd are found in the TR region. Naturally infected plants of eggplant with this TCDVd isolate did not display any disease symptoms. We demonstrated that in eggplant TCDVd is mechanically transmitted with low to moderate efficiency with cultivation practices, but not by plant¿to¿plant contact. Tomato plants artificially inoculated with the eggplant isolate of TCDVd tested positive for the presence of the viroid at 50¿days after inoculation, but did not display any disease symptoms. Seed transmission to germinated seedlings of eggplant was variable among progenies from infected plants, ranging from 7.7% to 100.0%. Disinfection of seeds with chemical treatments with sodium hypochlorite and trisodium phosphate solutions plus thermotherapy at 80°C for 24¿hr or 90°C for 6 hr was ineffective in reducing the rate of transmission by seed. We did not find evidence of horizontal transmission of TCDVd by pollen, but vertical transmission was highly efficient when healthy eggplant plants were pollinated with infected pollen. Our results indicate that asymptomatic infection of eggplant by TCDVd and high seed and pollen transmission rates may contribute to the spread of this viroid. The information we obtained is useful in order to implement measures for the prevention, control and eradication of TCDVd in eggplant crops, as well as to avoid their transmission to other hosts. | es_ES |
dc.description.sponsorship | P.G. is grateful to Universitat Politècnica de València and to Japan Society for the Promotion of Science for their respective postdoctoral grants (PAID-10-18 and FY2019 JSPS Postdoctoral Fellowship for Research in Japan [Standard]). A.A. and D.A. are grateful to Universitat Politècnica de València for their respective predoctoral (PAID-01-18 and PAID-01-16) contracts within the Programa de Ayudas de Investigación y Desarrollo initiative. E.G.-F. is grateful to Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario for a predoctoral grant (FPU17/02389). G.M. is grateful to Generalitat Valenciana for a predoctoral grant within the Santiago Grisolía programme (GRISOLIAP/2016/012). M.P. is grateful to Generalitat Valenciana and Fondo Social Europeo for a postdoctoral grant (APOSTD/2018/014). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Annals of Applied Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mechanical transmission | es_ES |
dc.subject | Pollen transmission | es_ES |
dc.subject | RT-PCR,seed disinfection | es_ES |
dc.subject | Seed transmission | es_ES |
dc.subject | Solanum melongena | es_ES |
dc.subject | TCDVd | es_ES |
dc.subject | Viroid sequence | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/aab.12527 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JSPS//FY2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F02389/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Gramazio, P.; Lerma Lerma, MD.; Villanueva-Párraga, G.; Vilanova Navarro, S.; García-Fortea, E.; Mangino, G.; Figás-Moreno, MDR.... (2019). Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Annals of Applied Biology. 175(2):172-183. https://doi.org/10.1111/aab.12527 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/aab.12527 | es_ES |
dc.description.upvformatpinicio | 172 | es_ES |
dc.description.upvformatpfin | 183 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\407110 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Japan Society for the Promotion of Science | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Bakker, D., Bruinsma, M., Dekter, R. W., Toonen, M. A. J., Verhoeven, J. T. J., & Koenraadt, H. M. S. (2015). Detection of PSTVd and TCDVd in seeds of tomato using real-time RT-PCR. EPPO Bulletin, 45(1), 14-21. doi:10.1111/epp.12195 | es_ES |
dc.description.references | Barba, M., & James, D. (2017). Quarantine and Certification for Viroids and Viroid Diseases. Viroids and Satellites, 415-424. doi:10.1016/b978-0-12-801498-1.00039-5 | es_ES |
dc.description.references | Broadbent, L. (1976). Epidemiology and Control of Tomato Mosaic Virus. Annual Review of Phytopathology, 14(1), 75-96. doi:10.1146/annurev.py.14.090176.000451 | es_ES |
dc.description.references | Candresse, T., Marais, A., Tassus, X., Suhard, P., Renaudin, I., Leguay, A., … Blancard, D. (2010). First Report of Tomato chlorotic dwarf viroid in Tomato in France. Plant Disease, 94(5), 633-633. doi:10.1094/pdis-94-5-0633b | es_ES |
dc.description.references | Candresse, T., Verhoeven, J. T. J., Stancanelli, G., Hammond, R. W., & Winter, S. (2017). Other Pospiviroids Infecting Solanaceous Plants. Viroids and Satellites, 159-168. doi:10.1016/b978-0-12-801498-1.00015-2 | es_ES |
dc.description.references | Červená, G., Nečekalová, J., Mikulková, H., Levkaničová, Z., Mertelík, J., Kloudová, K., … Ptáček, J. (2011). VIROIDS ON PETUNIA AND OTHER SOLANACEOUS CROPS IN THE CZECH REPUBLIC. Acta Horticulturae, (901), 35-40. doi:10.17660/actahortic.2011.901.3 | es_ES |
dc.description.references | Constable F. &Moran J.(1996).PCR protocols for the detection of chrysanthemum stunt and potato spindle tuber viroids. Final Report for the Horticultural Research and Development Corporation Project number PT410. Victoria Australia: Department of Natural Resources and Environment. | es_ES |
dc.description.references | Daròs, J.-A. (2017). Eggplant Latent Viroid. Viroids and Satellites, 339-344. doi:10.1016/b978-0-12-801498-1.00032-2 | es_ES |
dc.description.references | Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6 | es_ES |
dc.description.references | FAGOAGA, C., & DURAN-VILA, N. (1996). Naturally occurring variants of citrus exocortis viroid in vegetable crops. Plant Pathology, 45(1), 45-53. doi:10.1046/j.1365-3059.1996.d01-104.x | es_ES |
dc.description.references | Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243 | es_ES |
dc.description.references | Fox, A., Daly, M., Nixon, T., Brurberg, M. B., Blystad, D.-R., Harju, V., … Adams, I. P. (2013). First report ofTomato chlorotic dwarf viroid(TCDVd) in tomato in Norway and subsequent eradication. New Disease Reports, 27, 8. doi:10.5197/j.2044-0588.2013.027.008 | es_ES |
dc.description.references | Giguère, T., Raj Adkar-Purushothama, C., & Perreault, J.-P. (2014). Comprehensive Secondary Structure Elucidation of Four Genera of the Family Pospiviroidae. PLoS ONE, 9(6), e98655. doi:10.1371/journal.pone.0098655 | es_ES |
dc.description.references | Giguère, T., & Perreault, J.-P. (2017). Classification of the Pospiviroidae based on their structural hallmarks. PLOS ONE, 12(8), e0182536. doi:10.1371/journal.pone.0182536 | es_ES |
dc.description.references | Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., & Hofacker, I. L. (2008). The Vienna RNA Websuite. Nucleic Acids Research, 36(Web Server), W70-W74. doi:10.1093/nar/gkn188 | es_ES |
dc.description.references | Hadidi, A., Flores, R., Randles, J., & Semancik, J. (2003). Viroids. doi:10.1071/9780643069855 | es_ES |
dc.description.references | Hailstones, D. L., Tesoriero, L. A., Terras, M. A., & Dephoff, C. (2003). Detection and eradication of Potato spindle tuber viroid in tomatoes in commercial production in New South Wales, Australia. Australasian Plant Pathology, 32(2), 317. doi:10.1071/ap03005 | es_ES |
dc.description.references | Hammond, R. W. (2017). Economic Significance of Viroids in Vegetable and Field Crops. Viroids and Satellites, 5-13. doi:10.1016/b978-0-12-801498-1.00001-2 | es_ES |
dc.description.references | Hammond, R. W. (2017). Seed, Pollen, and Insect Transmission of Viroids. Viroids and Satellites, 521-530. doi:10.1016/b978-0-12-801498-1.00048-6 | es_ES |
dc.description.references | Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027 | es_ES |
dc.description.references | James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57(2), 400-400. doi:10.1111/j.1365-3059.2007.01727.x | es_ES |
dc.description.references | Keese, P., & Symons, R. H. (1985). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, 82(14), 4582-4586. doi:10.1073/pnas.82.14.4582 | es_ES |
dc.description.references | Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006 | es_ES |
dc.description.references | Kryczyński, S., Paduch-Cichal, E., & Skrzeczkowski, L. J. (1988). Transmission of Three Viroids Through Seed and Pollen of Tomato Plants. Journal of Phytopathology, 121(1), 51-57. doi:10.1111/j.1439-0434.1988.tb00952.x | es_ES |
dc.description.references | Li, R., Baysal-Gurel, F., Abdo, Z., Miller, S. A., & Ling, K.-S. (2015). Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virology Journal, 12(1), 5. doi:10.1186/s12985-014-0237-5 | es_ES |
dc.description.references | Ling, K.-S. (2017). Decontamination Measures to Prevent Mechanical Transmission of Viroids. Viroids and Satellites, 437-445. doi:10.1016/b978-0-12-801498-1.00041-3 | es_ES |
dc.description.references | Ling, K.-S., Verhoeven, J. T. J., Singh, R. P., & Brown, J. K. (2009). First Report of Tomato chlorotic dwarf viroid in Greenhouse Tomatoes in Arizona. Plant Disease, 93(10), 1075-1075. doi:10.1094/pdis-93-10-1075b | es_ES |
dc.description.references | Ling, K.-S., & Zhang, W. (2009). First Report of a Natural Infection by Mexican Papita Viroid and Tomato Chlorotic Dwarf Viroid on Greenhouse Tomatoes in Mexico. Plant Disease, 93(11), 1216-1216. doi:10.1094/pdis-93-11-1216a | es_ES |
dc.description.references | Mackie, A. E., Coutts, B. A., Barbetti, M. J., Rodoni, B. C., McKirdy, S. J., & Jones, R. A. C. (2015). Potato spindle tuber viroid: Stability on Common Surfaces and Inactivation With Disinfectants. Plant Disease, 99(6), 770-775. doi:10.1094/pdis-09-14-0929-re | es_ES |
dc.description.references | Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74(2), 182-184. doi:10.1007/s10327-008-0076-6 | es_ES |
dc.description.references | Matsushita, Y., & Tsuda, S. (2014). Host ranges of Potato spindle tuber viroid, Tomato chlorotic dwarf viroid, Tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 141(1), 193-197. doi:10.1007/s10658-014-0518-2 | es_ES |
dc.description.references | Matsushita, Y., & Tsuda, S. (2016). Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. European Journal of Plant Pathology, 145(4), 1007-1011. doi:10.1007/s10658-016-0868-z | es_ES |
dc.description.references | Matsushita, Y., Usugi, T., & Tsuda, S. (2009). Host range and properties of Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 124(2), 349-352. doi:10.1007/s10658-008-9416-9 | es_ES |
dc.description.references | Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130(4), 441-447. doi:10.1007/s10658-011-9766-6 | es_ES |
dc.description.references | Matsuura, S., Matsushita, Y., Kozuka, R., Shimizu, S., & Tsuda, S. (2009). Transmission of Tomato chlorotic dwarf viroid by bumblebees (Bombus ignitus) in tomato plants. European Journal of Plant Pathology, 126(1), 111-115. doi:10.1007/s10658-009-9515-2 | es_ES |
dc.description.references | Matsuura, S., Matsushita, Y., Usugi, T., & Tsuda, S. (2010). Disinfection of Tomato chlorotic dwarf viroid by chemical and biological agents. Crop Protection, 29(10), 1157-1161. doi:10.1016/j.cropro.2010.05.018 | es_ES |
dc.description.references | Minoia, S., Navarro, B., Delgado, S., Serio, F. D., & Flores, R. (2015). Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Research, 43(4), 2313-2325. doi:10.1093/nar/gkv034 | es_ES |
dc.description.references | Nie, X. (2012). Analysis of Sequence Polymorphism and Population Structure of Tomato chlorotic dwarf viroid and Potato spindle tuber viroid in Viroid-Infected Tomato Plants. Viruses, 4(6), 940-953. doi:10.3390/v4060940 | es_ES |
dc.description.references | Palukaitis, P. (1987). Potato spindle tuber viroid: Investigation of the long-distance, intra-plant transport route. Virology, 158(1), 239-241. doi:10.1016/0042-6822(87)90260-1 | es_ES |
dc.description.references | PROHENS, J., SOLER, S., & NUEZ, F. (1999). The effects of thermotherapy and sodium hypochlorite treatments on pepino seed germination, a crucial step in breeding programmes. Annals of Applied Biology, 134(3), 299-305. doi:10.1111/j.1744-7348.1999.tb05268.x | es_ES |
dc.description.references | Shiraishi, T., Maejima, K., Komatsu, K., Hashimoto, M., Okano, Y., Kitazawa, Y., … Namba, S. (2013). First report of tomato chlorotic dwarf viroid isolated from symptomless petunia plants (Petunia spp.) in Japan. Journal of General Plant Pathology, 79(3), 214-216. doi:10.1007/s10327-013-0444-8 | es_ES |
dc.description.references | Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75 | es_ES |
dc.description.references | Singh, R. P. (1992). Detection of Potato Spindle Tuber Viroid in the Pollen and Various Parts of Potato Plant Pollinated with Viroid-Infected Pollen. Plant Disease, 76(9), 951. doi:10.1094/pd-76-0951 | es_ES |
dc.description.references | Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids The GenBank accession number of the sequence reported in this paper is AF162131. Journal of General Virology, 80(11), 2823-2828. doi:10.1099/0022-1317-80-11-2823 | es_ES |
dc.description.references | Singh, R. P., & Dilworth, A. D. (2008). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123(1), 111-116. doi:10.1007/s10658-008-9344-8 | es_ES |
dc.description.references | Singh, R. P., Dilworth, A. D., Ao, X., Singh, M., & Misra, S. (2009). Molecular and biological characterization of a severe isolate of Tomato chlorotic dwarf viroid containing a novel terminal right (TR) domain sequence. European Journal of Plant Pathology, 127(1), 63-72. doi:10.1007/s10658-009-9571-7 | es_ES |
dc.description.references | Škorić, D. (2017). Viroid Biology. Viroids and Satellites, 53-61. doi:10.1016/b978-0-12-801498-1.00005-x | es_ES |
dc.description.references | Van Bogaert, N., Smagghe, G., Maes, M., De Backer, M., & De Jonghe, K. (2017). Phylogeny of five predominant pospiviroid species in Belgium. European Journal of Plant Pathology, 149(1), 25-33. doi:10.1007/s10658-017-1158-0 | es_ES |
dc.description.references | Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources ofPotato spindle tuber viroidinoculum for tomato. Plant Pathology, 59(1), 3-12. doi:10.1111/j.1365-3059.2009.02173.x | es_ES |
dc.description.references | Verhoeven, J. T. J., Hammond, R. W., & Stancanelli, G. (2017). Economic Significance of Viroids in Ornamental Crops. Viroids and Satellites, 27-38. doi:10.1016/b978-0-12-801498-1.00003-6 | es_ES |
dc.description.references | Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5 | es_ES |
dc.description.references | Võ, T. T., Dehne, H.-W., & Hamacher, J. (2018). Transmission of Tomato chlorotic dwarf viroid by Myzus persicae assisted by Potato leafroll virus. Journal of Plant Diseases and Protection, 125(3), 259-266. doi:10.1007/s41348-018-0151-y | es_ES |
dc.description.references | Wassenegger, M., Spieker, R. L., Thalmeir, S., Gast, F.-U., Riedel, L., & Sänger, H. L. (1996). A Single Nucleotide Substitution Converts Potato Spindle Tuber Viroid (PSTVd) from a Noninfectious to an Infectious RNA for Nicotiana tabacum. Virology, 226(2), 191-197. doi:10.1006/viro.1996.0646 | es_ES |
dc.description.references | Yanagisawa, H., & Matsushita, Y. (2018). Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroid-infected pollen. Virology, 516, 258-264. doi:10.1016/j.virol.2018.01.023 | es_ES |
dc.description.references | Yanagisawa, H., Sano, T., Hase, S., & Matsushita, Y. (2019). Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology, 526, 22-31. doi:10.1016/j.virol.2018.09.021 | es_ES |