Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Gómez, Jorge | es_ES |
dc.contributor.author | Hurtado Montañés, Juan | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2020-05-07T05:57:29Z | |
dc.date.available | 2020-05-07T05:57:29Z | |
dc.date.issued | 2020-03-30 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142686 | |
dc.description | © 2020 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | [EN] Typically, materials with large optical losses such as metals are used as microheaters for silicon based thermo-optic phase shifters. Consequently, the heater must be placed far from the waveguide, which could come at the expense of the phase shifter performance. Reducing the gap between the waveguide and the heater allows reducing the power consumption or increasing the switching speed. In this work, we propose an ultra-low loss microheater for thermo-optic tuning by using a CMOS-compatible transparent conducting oxide such as indium tin oxide (ITO) with the aim of drastically reducing the gap. Using finite element method simulations, ITO and Ti based heaters are compared for different cladding configurations and TE and TM polarizations. Furthermore, the proposed ITO based microheaters have also been fabricated using the optimum gap and cladding configuration. Experimental results show power consumption to achieve a pi phase shift of 10 mW and switching time of a few microseconds for a 50 mu m long ITO heater. The obtained results demonstrate the potential of using ITO as an ultra-low loss microheater for high performance silicon thermo-optic tuning and open an alternative way for enabling the large-scale integration of phase shifters required in emerging integrated photonic applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | es_ES |
dc.description.sponsorship | Ministerio de Economía y Competitividad (TEC2016-76849); Generalitat Valenciana (PROMETEO/2019/123); Ministerio de Ciencia, Innovación y Universidades (FPU17/04224). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Electrical-properties | es_ES |
dc.subject | Nanocavity modulator | es_ES |
dc.subject | Silicon | es_ES |
dc.subject | Compact | es_ES |
dc.subject | Microheaters | es_ES |
dc.subject | Photonics | es_ES |
dc.subject | Heater | es_ES |
dc.subject | Switch | es_ES |
dc.subject | Films | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.386959 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F04224//AYUDA CONTRATO PREDOCTORAL FPU-PARRA GOMEZ. PROYECTO: DISPOSITIVOS OPTOELECTRONICOS BASADOS EN LA INTEGRACION DE MATERIALES CON PRESTACIONES UNICAS EN LA TECNOLOGIA DE FOTONICA DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F123/ES/NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Parra Gómez, J.; Hurtado Montañés, J.; Griol Barres, A.; Sanchis Kilders, P. (2020). Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Optics Express. 28(7):9393-9404. https://doi.org/10.1364/OE.386959 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.386959 | es_ES |
dc.description.upvformatpinicio | 9393 | es_ES |
dc.description.upvformatpfin | 9404 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\406023 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Komma, J., Schwarz, C., Hofmann, G., Heinert, D., & Nawrodt, R. (2012). Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Applied Physics Letters, 101(4), 041905. doi:10.1063/1.4738989 | es_ES |
dc.description.references | Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature11727 | es_ES |
dc.description.references | Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93 | es_ES |
dc.description.references | Atabaki, A. H., Moazeni, S., Pavanello, F., Gevorgyan, H., Notaros, J., Alloatti, L., … Ram, R. J. (2018). Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556(7701), 349-354. doi:10.1038/s41586-018-0028-z | es_ES |
dc.description.references | Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1 | es_ES |
dc.description.references | Sun, P., & Reano, R. M. (2010). Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Optics Express, 18(8), 8406. doi:10.1364/oe.18.008406 | es_ES |
dc.description.references | Atabaki, A. H., Eftekhar, A. A., Yegnanarayanan, S., & Adibi, A. (2013). Sub-100-nanosecond thermal reconfiguration of silicon photonic devices. Optics Express, 21(13), 15706. doi:10.1364/oe.21.015706 | es_ES |
dc.description.references | Masood, A., Pantouvaki, M., Goossens, D., Lepage, G., Verheyen, P., Van Campenhout, J., … Bogaerts, W. (2014). Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices. Optical Materials Express, 4(7), 1383. doi:10.1364/ome.4.001383 | es_ES |
dc.description.references | Rosa, Á., Gutiérrez, A., Brimont, A., Griol, A., & Sanchis, P. (2016). High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Optics Express, 24(1), 191. doi:10.1364/oe.24.000191 | es_ES |
dc.description.references | Jacques, M., Samani, A., El-Fiky, E., Patel, D., Xing, Z., & Plant, D. V. (2019). Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Optics Express, 27(8), 10456. doi:10.1364/oe.27.010456 | es_ES |
dc.description.references | Wang, X., & Chiang, K. S. (2019). Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler. Optics Express, 27(24), 35385. doi:10.1364/oe.27.035385 | es_ES |
dc.description.references | Atabaki, A. H., Shah Hosseini, E., Eftekhar, A. A., Yegnanarayanan, S., & Adibi, A. (2010). Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Optics Express, 18(17), 18312. doi:10.1364/oe.18.018312 | es_ES |
dc.description.references | Yu, L., Yin, Y., Shi, Y., Dai, D., & He, S. (2016). Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3(2), 159. doi:10.1364/optica.3.000159 | es_ES |
dc.description.references | Schall, D., Mohsin, M., Sagade, A. A., Otto, M., Chmielak, B., Suckow, S., … Kurz, H. (2016). Infrared transparent graphene heater for silicon photonic integrated circuits. Optics Express, 24(8), 7871. doi:10.1364/oe.24.007871 | es_ES |
dc.description.references | Yan, S., Zhu, X., Frandsen, L. H., Xiao, S., Mortensen, N. A., Dong, J., & Ding, Y. (2017). Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 8(1). doi:10.1038/ncomms14411 | es_ES |
dc.description.references | Xu, Z., Qiu, C., Yang, Y., Zhu, Q., Jiang, X., Zhang, Y., … Su, Y. (2017). Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 25(16), 19479. doi:10.1364/oe.25.019479 | es_ES |
dc.description.references | Lv, J., Yang, Y., Lin, B., Cao, Y., Zhang, Y., Li, S., … Zhang, D. (2019). Graphene-embedded first-order mode polymer Mach–Zender interferometer thermo-optic switch with low power consumption. Optics Letters, 44(18), 4606. doi:10.1364/ol.44.004606 | es_ES |
dc.description.references | Wang, X., Jin, W., Chang, Z., & Chiang, K. S. (2019). Buried graphene electrode heater for a polymer waveguide thermo-optic device. Optics Letters, 44(6), 1480. doi:10.1364/ol.44.001480 | es_ES |
dc.description.references | Lee, D.-J., Kim, H.-M., Kwon, J.-Y., Choi, H., Kim, S.-H., & Kim, K.-B. (2010). Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films. Advanced Functional Materials, 21(3), 448-455. doi:10.1002/adfm.201001342 | es_ES |
dc.description.references | Cleary, J. W., Smith, E. M., Leedy, K. D., Grzybowski, G., & Guo, J. (2018). Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics. Optical Materials Express, 8(5), 1231. doi:10.1364/ome.8.001231 | es_ES |
dc.description.references | Ray, S., Banerjee, R., Basu, N., Batabyal, A. K., & Barua, A. K. (1983). Properties of tin doped indium oxide thin films prepared by magnetron sputtering. Journal of Applied Physics, 54(6), 3497-3501. doi:10.1063/1.332415 | es_ES |
dc.description.references | Babicheva, V. E., Kinsey, N., Naik, G. V., Ferrera, M., Lavrinenko, A. V., Shalaev, V. M., & Boltasseva, A. (2013). Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Optics Express, 21(22), 27326. doi:10.1364/oe.21.027326 | es_ES |
dc.description.references | Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R.-M., & Zhang, X. (2012). Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1(1), 17-22. doi:10.1515/nanoph-2012-0009 | es_ES |
dc.description.references | Shi, K., Haque, R. R., Zhao, B., Zhao, R., & Lu, Z. (2014). Broadband electro-optical modulator based on transparent conducting oxide. Optics Letters, 39(17), 4978. doi:10.1364/ol.39.004978 | es_ES |
dc.description.references | Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., … Leuthold, J. (2014). The plasmonic memristor: a latching optical switch. Optica, 1(4), 198. doi:10.1364/optica.1.000198 | es_ES |
dc.description.references | Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J. S., Kik, P. G., & Brongersma, M. L. (2018). Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics, 5(11), 4484-4490. doi:10.1021/acsphotonics.8b00945 | es_ES |
dc.description.references | Li, E., Gao, Q., Chen, R. T., & Wang, A. X. (2018). Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Nano Letters, 18(2), 1075-1081. doi:10.1021/acs.nanolett.7b04588 | es_ES |
dc.description.references | Li, E., Gao, Q., Liverman, S., & Wang, A. X. (2018). One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Optics Letters, 43(18), 4429. doi:10.1364/ol.43.004429 | es_ES |
dc.description.references | Amin, R., Maiti, R., Carfano, C., Ma, Z., Tahersima, M. H., Lilach, Y., … Sorger, V. J. (2018). 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics, 3(12), 126104. doi:10.1063/1.5052635 | es_ES |
dc.description.references | Gao, Q., Li, E., & Wang, A. X. (2018). Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photonics Research, 6(4), 277. doi:10.1364/prj.6.000277 | es_ES |
dc.description.references | Wood, M. G., Campione, S., Parameswaran, S., Luk, T. S., Wendt, J. R., Serkland, D. K., & Keeler, G. A. (2018). Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5(3), 233. doi:10.1364/optica.5.000233 | es_ES |
dc.description.references | Li, E., Nia, B. A., Zhou, B., & Wang, A. X. (2019). Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photonics Research, 7(4), 473. doi:10.1364/prj.7.000473 | es_ES |
dc.description.references | Parra, J., Olivares, I., Brimont, A., & Sanchis, P. (2019). Non-volatile epsilon-near-zero readout memory. Optics Letters, 44(16), 3932. doi:10.1364/ol.44.003932 | es_ES |
dc.description.references | Gui, Y., Miscuglio, M., Ma, Z., Tahersima, M. H., Sun, S., Amin, R., … Sorger, V. J. (2019). Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Scientific Reports, 9(1). doi:10.1038/s41598-019-47631-5 | es_ES |
dc.description.references | Xian, S., Nie, L., Qin, J., Kang, T., Li, C., Xie, J., … Bi, L. (2019). Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Optics Express, 27(20), 28618. doi:10.1364/oe.27.028618 | es_ES |
dc.description.references | Michelotti, F., Dominici, L., Descrovi, E., Danz, N., & Menchini, F. (2009). Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 μm. Optics Letters, 34(6), 839. doi:10.1364/ol.34.000839 | es_ES |
dc.description.references | Fang, X., & Yang, L. (2017). Thermal effect analysis of silicon microring optical switch for on-chip interconnect. Journal of Semiconductors, 38(10), 104004. doi:10.1088/1674-4926/38/10/104004 | es_ES |