- -

Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)

Show full item record

Guijarro-Real, C.; Adalid-Martinez, AM.; Aguirre, K.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides). Agronomy. 9(12):1-14. https://doi.org/10.3390/agronomy9120858

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142896

Files in this item

Item Metadata

Title: Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)
Author: Guijarro-Real, Carla Adalid-Martinez, Ana Maria Aguirre, Katherine Prohens Tomás, Jaime Rodríguez Burruezo, Adrián Fita, Ana
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Wall rocket (Diplotaxis erucoides) is a wild vegetable with the potential to become a crop of high antioxidant quality. The main bioactive compounds include ascorbic acid (AA), sinigrin, and a high content of total ...[+]
Subjects: Ascorbic acid , Diplotaxis erucoides , Field , Greenhouse , New crops , Nitrates , Sinigrin
Copyrigths: Reconocimiento (by)
Source:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy9120858
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/agronomy9120858
Project ID:
info:eu-repo/grantAgreement/MECD//FPU2014-06798/ES/FPU2014-06798/
Thanks:
C.G. is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). The authors also thank Ms. E. Moreno and Ms. M.D. Lerma for ...[+]
Type: Artículo

References

Scientific Concepts of Functional Foods in Europe Consensus Document. (1999). British Journal of Nutrition, 81(4), S1-S27. doi:10.1017/s0007114599000471

Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020

Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299 [+]
Scientific Concepts of Functional Foods in Europe Consensus Document. (1999). British Journal of Nutrition, 81(4), S1-S27. doi:10.1017/s0007114599000471

Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020

Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299

Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036

Serrasolses, G., Calvet-Mir, L., Carrió, E., D’Ambrosio, U., Garnatje, T., Parada, M., … Reyes-García, V. (2016). A Matter of Taste: Local Explanations for the Consumption of Wild Food Plants in the Catalan Pyrenees and the Balearic Islands1. Economic Botany, 70(2), 176-189. doi:10.1007/s12231-016-9343-1

Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050

Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7

Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107

Adikwu, E., & Deo, O. (2013). Hepatoprotective Effect of Vitamin C (Ascorbic Acid). Pharmacology & Pharmacy, 04(01), 84-92. doi:10.4236/pp.2013.41012

Molecular Basis of Nutrition and Aging. (2016). doi:10.1016/c2014-0-00388-7

Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. doi:10.1016/j.fitote.2011.01.018

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5. doi:10.1017/jns.2016.41

Mandl, J., Szarka, A., & Bánhegyi, G. (2009). Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology, 157(7), 1097-1110. doi:10.1111/j.1476-5381.2009.00282.x

Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4

Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116

Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003

Santamaria, P. (2005). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. doi:10.1002/jsfa.2351

Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036

Habermeyer, M., Roth, A., Guth, S., Diel, P., Engel, K.-H., Epe, B., … Eisenbrand, G. (2014). Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128. doi:10.1002/mnfr.201400286

Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022

Durazzo, A., Azzini, E., Lazzè, M., Raguzzini, A., Pizzala, R., & Maiani, G. (2013). Italian Wild Rocket [Diplotaxis Tenuifolia (L.) DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects. Agriculture, 3(2), 285-298. doi:10.3390/agriculture3020285

Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519

Oh, M.-M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. doi:10.1016/j.plaphy.2009.02.008

Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., … Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538-556. doi:10.1016/j.phytochem.2011.01.014

Sogbohossou, E. O. D., Achigan-Dako, E. G., Maundu, P., Solberg, S., Deguenon, E. M. S., Mumm, R. H., … Schranz, M. E. (2018). A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Horticulture Research, 5(1). doi:10.1038/s41438-017-0001-2

Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778

Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013

Cano, A., & Bermejo, A. (2011). Influence of rootstock and cultivar on bioactive compounds in citrus peels. Journal of the Science of Food and Agriculture, 91(9), 1702-1711. doi:10.1002/jsfa.4375

Grosser, K., & van Dam, N. M. (2017). A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments, (121). doi:10.3791/55425

Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535

Electron correlations in narrow energy bands. (1963). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365), 238-257. doi:10.1098/rspa.1963.0204

Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296

Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051

Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020

Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774

Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628

Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068

Weightman, R. M., Huckle, A. J., Roques, S. E., Ginsburg, D., & Dyer, C. J. (2012). Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Additives & Contaminants: Part A, 29(9), 1425-1435. doi:10.1080/19440049.2012.696215

GUIJARRO-REAL, C., RODRÍGUEZ-BURRUEZO, A., PROHENS, J., ADALID-MARTÍNEZ, A. M., & FITA, A. (2017). Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 74(2), 144. doi:10.15835/buasvmcn-hort:0011

D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019

Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites inEruca sativa(Salad Rocket),Diplotaxis erucoides(Wall Rocket),Diplotaxis tenuifolia(Wild Rocket), andBunias orientalis(Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756t

Sans, F. X., & Masalles, R. M. (1994). Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Canadian Journal of Botany, 72(1), 10-19. doi:10.1139/b94-003

Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Kissen, R., Eberl, F., Winge, P., Uleberg, E., Martinussen, I., & Bones, A. M. (2016). Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry, 130, 106-118. doi:10.1016/j.phytochem.2016.06.003

Steindal, A. L. H., Rødven, R., Hansen, E., & Mølmann, J. (2015). Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chemistry, 174, 44-51. doi:10.1016/j.foodchem.2014.10.129

Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806r

Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7

Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036

Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). «Physiological quality» of organically grown vegetables. Scientia Horticulturae, 208, 131-139. doi:10.1016/j.scienta.2016.01.033

Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. doi:10.1016/j.jplph.2015.10.002

Cardenas-Navarro, R., Adamowicz, S., & Robin, P. (1999). Nitrate accumulation in plants: a role for water. Journal of Experimental Botany, 50(334), 613-624. doi:10.1093/jxb/50.334.613

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record