Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro-Real, Carla | es_ES |
dc.contributor.author | Adalid-Martinez, Ana Maria | es_ES |
dc.contributor.author | Aguirre, Katherine | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Rodríguez Burruezo, Adrián | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.date.accessioned | 2020-05-09T03:00:53Z | |
dc.date.available | 2020-05-09T03:00:53Z | |
dc.date.issued | 2019-12-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142896 | |
dc.description.abstract | [EN] Wall rocket (Diplotaxis erucoides) is a wild vegetable with the potential to become a crop of high antioxidant quality. The main bioactive compounds include ascorbic acid (AA), sinigrin, and a high content of total phenolic compounds (TP). It also accumulates nitrates. Since these compounds are affected by environmental conditions, adequate crop management may enhance its quality. Eleven accessions of wall rocket were evaluated under field and greenhouse conditions during two cycles (winter and spring) and compared to Eruca sativa and Diplotaxis tenuifolia crops. The three species did not differ greatly. As an exception, sinigrin was only identified in wall rocket. For the within-species analysis, the results revealed a high effect of the growing system, but this was low among accessions. The highest contents of AA and TP were obtained under field conditions. In addition, the levels of nitrates were lower in this system. A negative correlation between nitrates and antioxidants was determined. As a counterpart, cultivation in the field¿winter environment significantly decreased the percentage of humidity (87%). These results are of relevance for the adaptation of wall rocket to different growing conditions and suggest that the field system enhances its quality. The low genotypic differences suggest that intra-species selections in breeding programs may consider other aspects with greater variation. | es_ES |
dc.description.sponsorship | C.G. is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). The authors also thank Ms. E. Moreno and Ms. M.D. Lerma for their help in the field tasks. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ascorbic acid | es_ES |
dc.subject | Diplotaxis erucoides | es_ES |
dc.subject | Field | es_ES |
dc.subject | Greenhouse | es_ES |
dc.subject | New crops | es_ES |
dc.subject | Nitrates | es_ES |
dc.subject | Sinigrin | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy9120858 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-06798/ES/FPU2014-06798/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Guijarro-Real, C.; Adalid-Martinez, AM.; Aguirre, K.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides). Agronomy. 9(12):1-14. https://doi.org/10.3390/agronomy9120858 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy9120858 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\398594 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Scientific Concepts of Functional Foods in Europe Consensus Document. (1999). British Journal of Nutrition, 81(4), S1-S27. doi:10.1017/s0007114599000471 | es_ES |
dc.description.references | Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020 | es_ES |
dc.description.references | Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299 | es_ES |
dc.description.references | Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036 | es_ES |
dc.description.references | Serrasolses, G., Calvet-Mir, L., Carrió, E., D’Ambrosio, U., Garnatje, T., Parada, M., … Reyes-García, V. (2016). A Matter of Taste: Local Explanations for the Consumption of Wild Food Plants in the Catalan Pyrenees and the Balearic Islands1. Economic Botany, 70(2), 176-189. doi:10.1007/s12231-016-9343-1 | es_ES |
dc.description.references | Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 | es_ES |
dc.description.references | Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7 | es_ES |
dc.description.references | Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107 | es_ES |
dc.description.references | Adikwu, E., & Deo, O. (2013). Hepatoprotective Effect of Vitamin C (Ascorbic Acid). Pharmacology & Pharmacy, 04(01), 84-92. doi:10.4236/pp.2013.41012 | es_ES |
dc.description.references | Molecular Basis of Nutrition and Aging. (2016). doi:10.1016/c2014-0-00388-7 | es_ES |
dc.description.references | Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. doi:10.1016/j.fitote.2011.01.018 | es_ES |
dc.description.references | Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5. doi:10.1017/jns.2016.41 | es_ES |
dc.description.references | Mandl, J., Szarka, A., & Bánhegyi, G. (2009). Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology, 157(7), 1097-1110. doi:10.1111/j.1476-5381.2009.00282.x | es_ES |
dc.description.references | Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4 | es_ES |
dc.description.references | Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116 | es_ES |
dc.description.references | Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003 | es_ES |
dc.description.references | Santamaria, P. (2005). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. doi:10.1002/jsfa.2351 | es_ES |
dc.description.references | Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036 | es_ES |
dc.description.references | Habermeyer, M., Roth, A., Guth, S., Diel, P., Engel, K.-H., Epe, B., … Eisenbrand, G. (2014). Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128. doi:10.1002/mnfr.201400286 | es_ES |
dc.description.references | Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022 | es_ES |
dc.description.references | Durazzo, A., Azzini, E., Lazzè, M., Raguzzini, A., Pizzala, R., & Maiani, G. (2013). Italian Wild Rocket [Diplotaxis Tenuifolia (L.) DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects. Agriculture, 3(2), 285-298. doi:10.3390/agriculture3020285 | es_ES |
dc.description.references | Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519 | es_ES |
dc.description.references | Oh, M.-M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. doi:10.1016/j.plaphy.2009.02.008 | es_ES |
dc.description.references | Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., … Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538-556. doi:10.1016/j.phytochem.2011.01.014 | es_ES |
dc.description.references | Sogbohossou, E. O. D., Achigan-Dako, E. G., Maundu, P., Solberg, S., Deguenon, E. M. S., Mumm, R. H., … Schranz, M. E. (2018). A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Horticulture Research, 5(1). doi:10.1038/s41438-017-0001-2 | es_ES |
dc.description.references | Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778 | es_ES |
dc.description.references | Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013 | es_ES |
dc.description.references | Cano, A., & Bermejo, A. (2011). Influence of rootstock and cultivar on bioactive compounds in citrus peels. Journal of the Science of Food and Agriculture, 91(9), 1702-1711. doi:10.1002/jsfa.4375 | es_ES |
dc.description.references | Grosser, K., & van Dam, N. M. (2017). A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments, (121). doi:10.3791/55425 | es_ES |
dc.description.references | Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535 | es_ES |
dc.description.references | Electron correlations in narrow energy bands. (1963). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365), 238-257. doi:10.1098/rspa.1963.0204 | es_ES |
dc.description.references | Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296 | es_ES |
dc.description.references | Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051 | es_ES |
dc.description.references | Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020 | es_ES |
dc.description.references | Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774 | es_ES |
dc.description.references | Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628 | es_ES |
dc.description.references | Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068 | es_ES |
dc.description.references | Weightman, R. M., Huckle, A. J., Roques, S. E., Ginsburg, D., & Dyer, C. J. (2012). Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Additives & Contaminants: Part A, 29(9), 1425-1435. doi:10.1080/19440049.2012.696215 | es_ES |
dc.description.references | GUIJARRO-REAL, C., RODRÍGUEZ-BURRUEZO, A., PROHENS, J., ADALID-MARTÍNEZ, A. M., & FITA, A. (2017). Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 74(2), 144. doi:10.15835/buasvmcn-hort:0011 | es_ES |
dc.description.references | D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019 | es_ES |
dc.description.references | Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites inEruca sativa(Salad Rocket),Diplotaxis erucoides(Wall Rocket),Diplotaxis tenuifolia(Wild Rocket), andBunias orientalis(Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756t | es_ES |
dc.description.references | Sans, F. X., & Masalles, R. M. (1994). Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Canadian Journal of Botany, 72(1), 10-19. doi:10.1139/b94-003 | es_ES |
dc.description.references | Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300 | es_ES |
dc.description.references | Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 | es_ES |
dc.description.references | Kissen, R., Eberl, F., Winge, P., Uleberg, E., Martinussen, I., & Bones, A. M. (2016). Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry, 130, 106-118. doi:10.1016/j.phytochem.2016.06.003 | es_ES |
dc.description.references | Steindal, A. L. H., Rødven, R., Hansen, E., & Mølmann, J. (2015). Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chemistry, 174, 44-51. doi:10.1016/j.foodchem.2014.10.129 | es_ES |
dc.description.references | Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806r | es_ES |
dc.description.references | Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7 | es_ES |
dc.description.references | Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036 | es_ES |
dc.description.references | Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). «Physiological quality» of organically grown vegetables. Scientia Horticulturae, 208, 131-139. doi:10.1016/j.scienta.2016.01.033 | es_ES |
dc.description.references | Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. doi:10.1016/j.jplph.2015.10.002 | es_ES |
dc.description.references | Cardenas-Navarro, R., Adamowicz, S., & Robin, P. (1999). Nitrate accumulation in plants: a role for water. Journal of Experimental Botany, 50(334), 613-624. doi:10.1093/jxb/50.334.613 | es_ES |