- -

Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro-Real, Carla es_ES
dc.contributor.author Adalid-Martinez, Ana Maria es_ES
dc.contributor.author Aguirre, Katherine es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2020-05-09T03:00:53Z
dc.date.available 2020-05-09T03:00:53Z
dc.date.issued 2019-12-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142896
dc.description.abstract [EN] Wall rocket (Diplotaxis erucoides) is a wild vegetable with the potential to become a crop of high antioxidant quality. The main bioactive compounds include ascorbic acid (AA), sinigrin, and a high content of total phenolic compounds (TP). It also accumulates nitrates. Since these compounds are affected by environmental conditions, adequate crop management may enhance its quality. Eleven accessions of wall rocket were evaluated under field and greenhouse conditions during two cycles (winter and spring) and compared to Eruca sativa and Diplotaxis tenuifolia crops. The three species did not differ greatly. As an exception, sinigrin was only identified in wall rocket. For the within-species analysis, the results revealed a high effect of the growing system, but this was low among accessions. The highest contents of AA and TP were obtained under field conditions. In addition, the levels of nitrates were lower in this system. A negative correlation between nitrates and antioxidants was determined. As a counterpart, cultivation in the field¿winter environment significantly decreased the percentage of humidity (87%). These results are of relevance for the adaptation of wall rocket to different growing conditions and suggest that the field system enhances its quality. The low genotypic differences suggest that intra-species selections in breeding programs may consider other aspects with greater variation. es_ES
dc.description.sponsorship C.G. is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). The authors also thank Ms. E. Moreno and Ms. M.D. Lerma for their help in the field tasks. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ascorbic acid es_ES
dc.subject Diplotaxis erucoides es_ES
dc.subject Field es_ES
dc.subject Greenhouse es_ES
dc.subject New crops es_ES
dc.subject Nitrates es_ES
dc.subject Sinigrin es_ES
dc.subject.classification GENETICA es_ES
dc.title Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy9120858 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-06798/ES/FPU2014-06798/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Guijarro-Real, C.; Adalid-Martinez, AM.; Aguirre, K.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Growing conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides). Agronomy. 9(12):1-14. https://doi.org/10.3390/agronomy9120858 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy9120858 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\398594 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Scientific Concepts of Functional Foods in Europe Consensus Document. (1999). British Journal of Nutrition, 81(4), S1-S27. doi:10.1017/s0007114599000471 es_ES
dc.description.references Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020 es_ES
dc.description.references Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036 es_ES
dc.description.references Serrasolses, G., Calvet-Mir, L., Carrió, E., D’Ambrosio, U., Garnatje, T., Parada, M., … Reyes-García, V. (2016). A Matter of Taste: Local Explanations for the Consumption of Wild Food Plants in the Catalan Pyrenees and the Balearic Islands1. Economic Botany, 70(2), 176-189. doi:10.1007/s12231-016-9343-1 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 es_ES
dc.description.references Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7 es_ES
dc.description.references Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107 es_ES
dc.description.references Adikwu, E., & Deo, O. (2013). Hepatoprotective Effect of Vitamin C (Ascorbic Acid). Pharmacology & Pharmacy, 04(01), 84-92. doi:10.4236/pp.2013.41012 es_ES
dc.description.references Molecular Basis of Nutrition and Aging. (2016). doi:10.1016/c2014-0-00388-7 es_ES
dc.description.references Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. doi:10.1016/j.fitote.2011.01.018 es_ES
dc.description.references Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5. doi:10.1017/jns.2016.41 es_ES
dc.description.references Mandl, J., Szarka, A., & Bánhegyi, G. (2009). Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology, 157(7), 1097-1110. doi:10.1111/j.1476-5381.2009.00282.x es_ES
dc.description.references Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4 es_ES
dc.description.references Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116 es_ES
dc.description.references Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003 es_ES
dc.description.references Santamaria, P. (2005). Nitrate in vegetables: toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. doi:10.1002/jsfa.2351 es_ES
dc.description.references Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036 es_ES
dc.description.references Habermeyer, M., Roth, A., Guth, S., Diel, P., Engel, K.-H., Epe, B., … Eisenbrand, G. (2014). Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128. doi:10.1002/mnfr.201400286 es_ES
dc.description.references Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022 es_ES
dc.description.references Durazzo, A., Azzini, E., Lazzè, M., Raguzzini, A., Pizzala, R., & Maiani, G. (2013). Italian Wild Rocket [Diplotaxis Tenuifolia (L.) DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects. Agriculture, 3(2), 285-298. doi:10.3390/agriculture3020285 es_ES
dc.description.references Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519 es_ES
dc.description.references Oh, M.-M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. doi:10.1016/j.plaphy.2009.02.008 es_ES
dc.description.references Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., … Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538-556. doi:10.1016/j.phytochem.2011.01.014 es_ES
dc.description.references Sogbohossou, E. O. D., Achigan-Dako, E. G., Maundu, P., Solberg, S., Deguenon, E. M. S., Mumm, R. H., … Schranz, M. E. (2018). A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Horticulture Research, 5(1). doi:10.1038/s41438-017-0001-2 es_ES
dc.description.references Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778 es_ES
dc.description.references Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013 es_ES
dc.description.references Cano, A., & Bermejo, A. (2011). Influence of rootstock and cultivar on bioactive compounds in citrus peels. Journal of the Science of Food and Agriculture, 91(9), 1702-1711. doi:10.1002/jsfa.4375 es_ES
dc.description.references Grosser, K., & van Dam, N. M. (2017). A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). Journal of Visualized Experiments, (121). doi:10.3791/55425 es_ES
dc.description.references Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535 es_ES
dc.description.references Electron correlations in narrow energy bands. (1963). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365), 238-257. doi:10.1098/rspa.1963.0204 es_ES
dc.description.references Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296 es_ES
dc.description.references Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051 es_ES
dc.description.references Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774 es_ES
dc.description.references Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628 es_ES
dc.description.references Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068 es_ES
dc.description.references Weightman, R. M., Huckle, A. J., Roques, S. E., Ginsburg, D., & Dyer, C. J. (2012). Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Additives & Contaminants: Part A, 29(9), 1425-1435. doi:10.1080/19440049.2012.696215 es_ES
dc.description.references GUIJARRO-REAL, C., RODRÍGUEZ-BURRUEZO, A., PROHENS, J., ADALID-MARTÍNEZ, A. M., & FITA, A. (2017). Influence of the Growing Conditions in the Content of Vitamin C in Diplotaxis erucoides. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 74(2), 144. doi:10.15835/buasvmcn-hort:0011 es_ES
dc.description.references D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019 es_ES
dc.description.references Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites inEruca sativa(Salad Rocket),Diplotaxis erucoides(Wall Rocket),Diplotaxis tenuifolia(Wild Rocket), andBunias orientalis(Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756t es_ES
dc.description.references Sans, F. X., & Masalles, R. M. (1994). Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Canadian Journal of Botany, 72(1), 10-19. doi:10.1139/b94-003 es_ES
dc.description.references Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300 es_ES
dc.description.references Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 es_ES
dc.description.references Kissen, R., Eberl, F., Winge, P., Uleberg, E., Martinussen, I., & Bones, A. M. (2016). Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry, 130, 106-118. doi:10.1016/j.phytochem.2016.06.003 es_ES
dc.description.references Steindal, A. L. H., Rødven, R., Hansen, E., & Mølmann, J. (2015). Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chemistry, 174, 44-51. doi:10.1016/j.foodchem.2014.10.129 es_ES
dc.description.references Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806r es_ES
dc.description.references Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7 es_ES
dc.description.references Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036 es_ES
dc.description.references Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). «Physiological quality» of organically grown vegetables. Scientia Horticulturae, 208, 131-139. doi:10.1016/j.scienta.2016.01.033 es_ES
dc.description.references Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. doi:10.1016/j.jplph.2015.10.002 es_ES
dc.description.references Cardenas-Navarro, R., Adamowicz, S., & Robin, P. (1999). Nitrate accumulation in plants: a role for water. Journal of Experimental Botany, 50(334), 613-624. doi:10.1093/jxb/50.334.613 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem