Mostrar el registro sencillo del ítem
dc.contributor.author | Cofelice, M. | es_ES |
dc.contributor.author | Cuomo, F. | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.date.accessioned | 2020-05-13T03:02:37Z | |
dc.date.available | 2020-05-13T03:02:37Z | |
dc.date.issued | 2019-09-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/142996 | |
dc.description.abstract | [EN] The necessity of producing innovative packaging systems has directed the attention of food industries towards the use of biodegradable polymers for developing new films able to protect foods and to extend their shelf-life, with lower environmental impact. In particular, edible films combining hydrophilic and hydrophobic ingredients could retard moisture loss, gas migration and ensure food integrity, reducing the necessity of using synthetic plastics. Alginate-based films obtained from emulsions of lemongrass essential oil (at 0.1% and 0.5%) in aqueous alginate solutions (1%), with Tween 80 as surfactant (0.3%), were obtained by casting and characterized as to microstructure and thermal behavior, as well as tensile, barrier and optical properties. Films were also crosslinked through spraying calcium chloride onto the film surface and the influence of oil emulsification and the crosslinking effect on the final film properties were evaluated. The film microstructure, analyzed through Field Emission Scanning Electron Microscopy (FESEM) revealed discontinuities in films containing essential oil associated with droplet flocculation and coalescence during drying, while calcium diffusion into the matrix was enhanced. The presence of essential oil reduced the film stiffness whereas calcium addition lowered the film¿s water solubility, increasing tensile strength and reducing the extensibility coherent with its crosslinking effect. | es_ES |
dc.description.sponsorship | This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Colloids and Interfaces | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Alginate | es_ES |
dc.subject | Calcium crosslinking | es_ES |
dc.subject | Edible films | es_ES |
dc.subject | Lemongrass essential oil | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/colloids3030058 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Cofelice, M.; Cuomo, F.; Chiralt, A. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces. 3(3):1-15. https://doi.org/10.3390/colloids3030058 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/colloids3030058 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2504-5377 | es_ES |
dc.relation.pasarela | S\410182 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Rossi, M., Passeri, D., Sinibaldi, A., Angjellari, M., Tamburri, E., Sorbo, A., … Dini, L. (2017). Nanotechnology for Food Packaging and Food Quality Assessment. Advances in Food and Nutrition Research, 149-204. doi:10.1016/bs.afnr.2017.01.002 | es_ES |
dc.description.references | Shit, S. C., & Shah, P. M. (2014). Edible Polymers: Challenges and Opportunities. Journal of Polymers, 2014, 1-13. doi:10.1155/2014/427259 | es_ES |
dc.description.references | Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374. doi:10.1016/j.carbpol.2015.10.074 | es_ES |
dc.description.references | Cofelice, M., Cuomo, F., & Lopez, F. (2018). Rheological Properties of Alginate–Essential Oil Nanodispersions. Colloids and Interfaces, 2(4), 48. doi:10.3390/colloids2040048 | es_ES |
dc.description.references | Cuomo, F., Lopez, F., Ceglie, A., Maiuro, L., Miguel, M. G., & Lindman, B. (2012). pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter, 8(16), 4415. doi:10.1039/c2sm07388a | es_ES |
dc.description.references | Cuomo, F., Cofelice, M., & Lopez, F. (2019). Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion. Polymers, 11(2), 259. doi:10.3390/polym11020259 | es_ES |
dc.description.references | Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 | es_ES |
dc.description.references | Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106-120. doi:10.1016/j.jbiotec.2016.07.005 | es_ES |
dc.description.references | Liakos, I., Grumezescu, A., Holban, A., Florin, I., D’Autilia, F., Carzino, R., … Athanassiou, A. (2016). Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 9(3), 42. doi:10.3390/ph9030042 | es_ES |
dc.description.references | Mbili, N. C., Opara, U. L., Lennox, C. L., & Vries, F. A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. Journal of Plant Diseases and Protection, 124(5), 499-511. doi:10.1007/s41348-017-0121-9 | es_ES |
dc.description.references | Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2014). Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology, 88, 1-7. doi:10.1016/j.postharvbio.2013.09.004 | es_ES |
dc.description.references | Cofelice, M., Lopez, F., & Cuomo, F. (2019). Quality Control of Fresh-Cut Apples after Coating Application. Foods, 8(6), 189. doi:10.3390/foods8060189 | es_ES |
dc.description.references | Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143 | es_ES |
dc.description.references | McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x | es_ES |
dc.description.references | Rao, J., & McClements, D. J. (2011). Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. Journal of Agricultural and Food Chemistry, 59(9), 5026-5035. doi:10.1021/jf200094m | es_ES |
dc.description.references | Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 | es_ES |
dc.description.references | Soares, J. P., Santos, J. E., Chierice, G. O., & Cavalheiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29(2), 57-64. doi:10.1590/s0100-46702004000200009 | es_ES |
dc.description.references | Hadi Razavi, S., Hashem Hosseini, M., Mohammad Ali Mousavi, S., Ahmad Shahidi Yasaghi, S., & Ghorbani Hasansaraei, A. (2008). Improving Antibacterial Activity of Edible Films Based on Chitosan by Incorporating Thyme and Clove Essential Oils and EDTA. Journal of Applied Sciences, 8(16), 2895-2900. doi:10.3923/jas.2008.2895.2900 | es_ES |
dc.description.references | Riquelme, N., Herrera, M. L., & Matiacevich, S. (2017). Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food and Bioproducts Processing, 104, 94-103. doi:10.1016/j.fbp.2017.05.005 | es_ES |
dc.description.references | Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004 | es_ES |
dc.description.references | Pavlath, A. E., Gossett, C., Camirand, W., & Robertson, G. H. (1999). Ionomeric Films of Alginic Acid. Journal of Food Science, 64(1), 61-63. doi:10.1111/j.1365-2621.1999.tb09861.x | es_ES |
dc.description.references | Olivas, G. I., & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology, 41(2), 359-366. doi:10.1016/j.lwt.2007.02.015 | es_ES |
dc.description.references | Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J., Tylewicz, U., & Lotti, N. (2018). Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials, 11(10), 1980. doi:10.3390/ma11101980 | es_ES |
dc.description.references | Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., & Qing, Z. (2016). Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydrate Polymers, 136, 259-265. doi:10.1016/j.carbpol.2015.09.034 | es_ES |
dc.description.references | Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9-16. doi:10.1016/j.foodhyd.2011.03.015 | es_ES |
dc.description.references | Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005 | es_ES |
dc.description.references | Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239. doi:10.1016/j.jfoodeng.2011.05.023 | es_ES |
dc.description.references | Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005). Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38(3), 267-272. doi:10.1016/j.foodres.2004.04.009 | es_ES |
dc.description.references | Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 81, 442-448. doi:10.1016/j.foodhyd.2018.03.014 | es_ES |
dc.description.references | Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Science and Technology, 37(3), 323-330. doi:10.1016/j.lwt.2003.09.008 | es_ES |
dc.description.references | Baek, S.-K., Kim, S., & Song, K. (2018). Characterization of Ecklonia cava Alginate Films Containing Cinnamon Essential Oils. International Journal of Molecular Sciences, 19(11), 3545. doi:10.3390/ijms19113545 | es_ES |
dc.description.references | Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343-350. doi:10.1016/j.jfoodeng.2012.02.012 | es_ES |
dc.description.references | Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094 | es_ES |
dc.description.references | Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. doi:10.1016/j.jfoodeng.2010.01.026 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |