- -

Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters

Mostrar el registro completo del ítem

Rodriguez-Fernandez, J.; Ramos, A.; Sanchez-Valdepeñas, J.; Serrano, J. (2019). Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters. Advances in Mechanical Engineering. 11(9):1-8. https://doi.org/10.1177/1687814019877077

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142998

Ficheros en el ítem

Metadatos del ítem

Título: Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters
Autor: Rodriguez-Fernandez, Jose Ramos, Angel Sanchez-Valdepeñas, Jesus Serrano, J.R.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Fuel lubricity prevents wear between metallic parts in relative motion inside the injection system of combustion engines. Among diesel fuels, paraffinic (gas-to-liquid or hydrotreated oils) and biodiesel (methyl esters) ...[+]
Palabras clave: Paraffinic fuel , Gas-to-liquid , Lubricity , Biodiesel , Methyl esters
Derechos de uso: Reconocimiento (by)
Fuente:
Advances in Mechanical Engineering. (issn: 1687-8132 )
DOI: 10.1177/1687814019877077
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1687814019877077
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2016-79641-R/ES/EFECTO DE BIOCOMBUSTIBLES AVANZADOS EN VEHICULOS DIESEL EURO 6 BAJO CONDICIONES REALES DE CONDUCCION/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study has been carried out under the framework of project ENE2016-79641-R, financed ...[+]
Tipo: Artículo

References

Hsieh, P. Y., & Bruno, T. J. (2015). A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Processing Technology, 129, 52-60. doi:10.1016/j.fuproc.2014.08.012

Anastopoulos, G., Kalligeros, S., Schinas, P., & Zannikos, F. (2013). Effect of dicarboxylic acid esters on the lubricity of aviation kerosene for use in CI engines. Friction, 1(3), 271-278. doi:10.1007/s40544-013-0025-z

Anastopoulos, G., Kaligeros, S., Schinas, P., Zannikou, Y., Karonis, D., & Zannikos, F. (2017). The Impact of Fatty Acid Diisopropanolamides on Marine Gas Oil Lubricity. Lubricants, 5(3), 28. doi:10.3390/lubricants5030028 [+]
Hsieh, P. Y., & Bruno, T. J. (2015). A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Processing Technology, 129, 52-60. doi:10.1016/j.fuproc.2014.08.012

Anastopoulos, G., Kalligeros, S., Schinas, P., & Zannikos, F. (2013). Effect of dicarboxylic acid esters on the lubricity of aviation kerosene for use in CI engines. Friction, 1(3), 271-278. doi:10.1007/s40544-013-0025-z

Anastopoulos, G., Kaligeros, S., Schinas, P., Zannikou, Y., Karonis, D., & Zannikos, F. (2017). The Impact of Fatty Acid Diisopropanolamides on Marine Gas Oil Lubricity. Lubricants, 5(3), 28. doi:10.3390/lubricants5030028

Sajjad, H., Masjuki, H. H., Varman, M., Kalam, M. A., Arbab, M. I., Imtenan, S., & Rahman, S. M. A. (2014). Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel. Renewable and Sustainable Energy Reviews, 30, 961-986. doi:10.1016/j.rser.2013.11.039

Lapuerta, M., Sánchez-Valdepeñas, J., & Sukjit, E. (2014). Effect of ambient humidity and hygroscopy on the lubricity of diesel fuels. Wear, 309(1-2), 200-207. doi:10.1016/j.wear.2013.11.017

Sundus, F., Fazal, M. A., & Masjuki, H. H. (2017). Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties. Renewable and Sustainable Energy Reviews, 70, 399-412. doi:10.1016/j.rser.2016.11.217

Chong, W. W. F., & Ng, J.-H. (2016). An atomic-scale approach for biodiesel boundary lubricity characterisation. International Biodeterioration & Biodegradation, 113, 34-43. doi:10.1016/j.ibiod.2016.03.029

De Oliveira, J. J., de Farias, A. C. M., & Alves, S. M. (2017). Evaluation of the biodiesel fuels lubricity using vibration signals and multiresolution analysis. Tribology International, 109, 104-113. doi:10.1016/j.triboint.2016.12.031

Anastopoulos, G., Lois, E., Serdari, A., Zanikos, F., Stournas, S., & Kalligeros, S. (2001). Lubrication Properties of Low-Sulfur Diesel Fuels in the Presence of Specific Types of Fatty Acid Derivatives. Energy & Fuels, 15(1), 106-112. doi:10.1021/ef990232n

Geller, D. P., & Goodrum, J. W. (2004). Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel, 83(17-18), 2351-2356. doi:10.1016/j.fuel.2004.06.004

Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89. doi:10.6028/jres.081a.011

Tavakoli, O., & Yoshida, H. (2006). Squid Oil and Fat Production from Squid Wastes Using Subcritical Water Hydrolysis:  Free Fatty Acids and Transesterification. Industrial & Engineering Chemistry Research, 45(16), 5675-5680. doi:10.1021/ie0513806

Kacem, M., Sellami, M., Kammoun, W., Frikha, F., Miled, N., & Ben Rebah, F. (2011). Seasonal Variations in Proximate and Fatty Acid Composition of Viscera ofSardinella aurita, Sarpa salpa, andSepia officinalisfrom Tunisia. Journal of Aquatic Food Product Technology, 20(2), 233-246. doi:10.1080/10498850.2011.560365

Üstün, G., Akova, A., & Dandik, L. (1996). Oil content and fatty acid composition of commercially important Turkish fish species. Journal of the American Oil Chemists’ Society, 73(3), 389-391. doi:10.1007/bf02523436

Noriega-Rodríguez, J. A., Ortega-García, J., Angulo-Guerrero, O., García, H. S., Medina-Juárez, L. A., & Gámez-Meza, N. (2009). Oil production from sardine (Sardinops sagax caerulea) Producción de aceite a partir de sardina (Sardinops sagax caerulea. CyTA - Journal of Food, 7(3), 173-179. doi:10.1080/19476330903010243

Suseno, S., Hayati, S., & Izaki, A. (2014). Fatty Acid Composition of Some Potential Fish Oil from Production Centers in Indonesia. Oriental Journal of Chemistry, 30(3), 975-980. doi:10.13005/ojc/300308

Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., & Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128(3), 219-240. doi:10.1016/0022-0981(89)90029-4

Stansell, G. R., Gray, V. M., & Sym, S. D. (2011). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24(4), 791-801. doi:10.1007/s10811-011-9696-x

Lang, I., Hodac, L., Friedl, T., & Feussner, I. (2011). Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology, 11(1), 124. doi:10.1186/1471-2229-11-124

Furlan, V. J. M., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359-365. doi:10.1016/j.bjm.2017.01.001

Zi-zhe, C., De-po Yang, Sheng-qing, W., Yong, W., Reaney, M. J. T., Zhi-min, Z., … Wen-zhe, Y. (2017). Conversion of poultry manure to biodiesel, a practical method of producing fatty acid methyl esters via housefly (Musca domestica L.) larval lipid. Fuel, 210, 463-471. doi:10.1016/j.fuel.2017.08.109

Hussein, M., Pillai, V. V., Goddard, J. M., Park, H. G., Kothapalli, K. S., Ross, D. A., … Selvaraj, V. (2017). Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLOS ONE, 12(2), e0171708. doi:10.1371/journal.pone.0171708

Dodos, G. S., Karonis, D., Zannikos, F., & Lois, E. (2015). Renewable fuels and lubricants from Lunaria annua L. Industrial Crops and Products, 75, 43-50. doi:10.1016/j.indcrop.2015.05.046

Miwa, T. K. (1971). Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. Journal of the American Oil Chemists Society, 48(6), 259-264. doi:10.1007/bf02638458

Kleiman, R., & Spencer, G. F. (1982). Search for new industrial oils: XVI. Umbelliflorae-seed oils rich in petroselinic acid. Journal of the American Oil Chemists’ Society, 59(1), 29-38. doi:10.1007/bf02670064

Gill, S. S., Tsolakis, A., Dearn, K. D., & Rodríguez-Fernández, J. (2011). Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 37(4), 503-523. doi:10.1016/j.pecs.2010.09.001

Rodríguez-Fernández, J., Lapuerta, M., & Sánchez-Valdepeñas, J. (2017). Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 104, 30-39. doi:10.1016/j.renene.2016.11.059

Musavi, A., Cizmeci, M., Tekin, A., & Kayahan, M. (2008). Effects of hydrogenation parameters ontrans isomer formation, selectivity and melting properties of fat. European Journal of Lipid Science and Technology, 110(3), 254-260. doi:10.1002/ejlt.200700118

Sukjit, E., Herreros, J. M., Dearn, K. D., García-Contreras, R., & Tsolakis, A. (2012). The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends. Energy, 42(1), 364-374. doi:10.1016/j.energy.2012.03.041

Knothe, G., & Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity†. Energy & Fuels, 19(3), 1192-1200. doi:10.1021/ef049684c

Lapuerta, M., Sánchez-Valdepeñas, J., Bolonio, D., & Sukjit, E. (2016). Effect of fatty acid composition of methyl and ethyl esters on the lubricity at different humidities. Fuel, 184, 202-210. doi:10.1016/j.fuel.2016.07.019

Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25. doi:10.1016/j.biortech.2010.06.035

Chamorro R. Lubricity of a paraffinic surrogated fuel blended with non-conventional methyl esters. Final Degree Project in Mechanical Engineering, University of Castilla-La Mancha, Ciudad Real, 2018 (in Spanish).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem