- -

Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodriguez-Fernandez, Jose es_ES
dc.contributor.author Ramos, Angel es_ES
dc.contributor.author Sanchez-Valdepeñas, Jesus es_ES
dc.contributor.author Serrano, J.R. es_ES
dc.date.accessioned 2020-05-13T03:02:41Z
dc.date.available 2020-05-13T03:02:41Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.issn 1687-8132 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142998
dc.description.abstract [EN] Fuel lubricity prevents wear between metallic parts in relative motion inside the injection system of combustion engines. Among diesel fuels, paraffinic (gas-to-liquid or hydrotreated oils) and biodiesel (methyl esters) fuels are emerging since some of them are renewable and, in the case of paraffinic fuels, present excellent properties that can be exploited in compression ignition engines. However, the lubricant properties of raw paraffinic fuels are poor. This work explores the potential of individual methyl esters, found in different biodiesel fuels derived from a wide variety of sources, as lubricity additives for paraffinic fuels. Blends at 1% and 2% ester content in a surrogate of paraffinic fuel were tested under the standardized high-frequency reciprocating rig test for lubricity determination. Results confirm the extremely poor lubricity of the surrogate and that the wear scar diameter measured (the higher this, the lower the fuel lubricity) can be significantly reduced with any of the tested esters just at 1% concentration. Higher ester concentration (2%) does not always improve the lubricity further. The number of double bonds in the ester was revealed very significant, but to boost the lubricity of the blend and fulfill the limits set in fuel quality standards, two or more polyunsaturated esters are necessary. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study has been carried out under the framework of project ENE2016-79641-R, financed by the Spanish Ministry of Economy, Industry and Competitiveness. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Advances in Mechanical Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Paraffinic fuel es_ES
dc.subject Gas-to-liquid es_ES
dc.subject Lubricity es_ES
dc.subject Biodiesel es_ES
dc.subject Methyl esters es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1687814019877077 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-79641-R/ES/EFECTO DE BIOCOMBUSTIBLES AVANZADOS EN VEHICULOS DIESEL EURO 6 BAJO CONDICIONES REALES DE CONDUCCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Rodriguez-Fernandez, J.; Ramos, A.; Sanchez-Valdepeñas, J.; Serrano, J. (2019). Lubricity of paraffinic fuels additivated with conventional and non-conventional methyl esters. Advances in Mechanical Engineering. 11(9):1-8. https://doi.org/10.1177/1687814019877077 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1687814019877077 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\408533 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hsieh, P. Y., & Bruno, T. J. (2015). A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Processing Technology, 129, 52-60. doi:10.1016/j.fuproc.2014.08.012 es_ES
dc.description.references Anastopoulos, G., Kalligeros, S., Schinas, P., & Zannikos, F. (2013). Effect of dicarboxylic acid esters on the lubricity of aviation kerosene for use in CI engines. Friction, 1(3), 271-278. doi:10.1007/s40544-013-0025-z es_ES
dc.description.references Anastopoulos, G., Kaligeros, S., Schinas, P., Zannikou, Y., Karonis, D., & Zannikos, F. (2017). The Impact of Fatty Acid Diisopropanolamides on Marine Gas Oil Lubricity. Lubricants, 5(3), 28. doi:10.3390/lubricants5030028 es_ES
dc.description.references Sajjad, H., Masjuki, H. H., Varman, M., Kalam, M. A., Arbab, M. I., Imtenan, S., & Rahman, S. M. A. (2014). Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel. Renewable and Sustainable Energy Reviews, 30, 961-986. doi:10.1016/j.rser.2013.11.039 es_ES
dc.description.references Lapuerta, M., Sánchez-Valdepeñas, J., & Sukjit, E. (2014). Effect of ambient humidity and hygroscopy on the lubricity of diesel fuels. Wear, 309(1-2), 200-207. doi:10.1016/j.wear.2013.11.017 es_ES
dc.description.references Sundus, F., Fazal, M. A., & Masjuki, H. H. (2017). Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties. Renewable and Sustainable Energy Reviews, 70, 399-412. doi:10.1016/j.rser.2016.11.217 es_ES
dc.description.references Chong, W. W. F., & Ng, J.-H. (2016). An atomic-scale approach for biodiesel boundary lubricity characterisation. International Biodeterioration & Biodegradation, 113, 34-43. doi:10.1016/j.ibiod.2016.03.029 es_ES
dc.description.references De Oliveira, J. J., de Farias, A. C. M., & Alves, S. M. (2017). Evaluation of the biodiesel fuels lubricity using vibration signals and multiresolution analysis. Tribology International, 109, 104-113. doi:10.1016/j.triboint.2016.12.031 es_ES
dc.description.references Anastopoulos, G., Lois, E., Serdari, A., Zanikos, F., Stournas, S., & Kalligeros, S. (2001). Lubrication Properties of Low-Sulfur Diesel Fuels in the Presence of Specific Types of Fatty Acid Derivatives. Energy & Fuels, 15(1), 106-112. doi:10.1021/ef990232n es_ES
dc.description.references Geller, D. P., & Goodrum, J. W. (2004). Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel, 83(17-18), 2351-2356. doi:10.1016/j.fuel.2004.06.004 es_ES
dc.description.references Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89. doi:10.6028/jres.081a.011 es_ES
dc.description.references Tavakoli, O., & Yoshida, H. (2006). Squid Oil and Fat Production from Squid Wastes Using Subcritical Water Hydrolysis:  Free Fatty Acids and Transesterification. Industrial & Engineering Chemistry Research, 45(16), 5675-5680. doi:10.1021/ie0513806 es_ES
dc.description.references Kacem, M., Sellami, M., Kammoun, W., Frikha, F., Miled, N., & Ben Rebah, F. (2011). Seasonal Variations in Proximate and Fatty Acid Composition of Viscera ofSardinella aurita, Sarpa salpa, andSepia officinalisfrom Tunisia. Journal of Aquatic Food Product Technology, 20(2), 233-246. doi:10.1080/10498850.2011.560365 es_ES
dc.description.references Üstün, G., Akova, A., & Dandik, L. (1996). Oil content and fatty acid composition of commercially important Turkish fish species. Journal of the American Oil Chemists’ Society, 73(3), 389-391. doi:10.1007/bf02523436 es_ES
dc.description.references Noriega-Rodríguez, J. A., Ortega-García, J., Angulo-Guerrero, O., García, H. S., Medina-Juárez, L. A., & Gámez-Meza, N. (2009). Oil production from sardine (Sardinops sagax caerulea) Producción de aceite a partir de sardina (Sardinops sagax caerulea. CyTA - Journal of Food, 7(3), 173-179. doi:10.1080/19476330903010243 es_ES
dc.description.references Suseno, S., Hayati, S., & Izaki, A. (2014). Fatty Acid Composition of Some Potential Fish Oil from Production Centers in Indonesia. Oriental Journal of Chemistry, 30(3), 975-980. doi:10.13005/ojc/300308 es_ES
dc.description.references Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., & Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128(3), 219-240. doi:10.1016/0022-0981(89)90029-4 es_ES
dc.description.references Stansell, G. R., Gray, V. M., & Sym, S. D. (2011). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24(4), 791-801. doi:10.1007/s10811-011-9696-x es_ES
dc.description.references Lang, I., Hodac, L., Friedl, T., & Feussner, I. (2011). Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology, 11(1), 124. doi:10.1186/1471-2229-11-124 es_ES
dc.description.references Furlan, V. J. M., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359-365. doi:10.1016/j.bjm.2017.01.001 es_ES
dc.description.references Zi-zhe, C., De-po Yang, Sheng-qing, W., Yong, W., Reaney, M. J. T., Zhi-min, Z., … Wen-zhe, Y. (2017). Conversion of poultry manure to biodiesel, a practical method of producing fatty acid methyl esters via housefly (Musca domestica L.) larval lipid. Fuel, 210, 463-471. doi:10.1016/j.fuel.2017.08.109 es_ES
dc.description.references Hussein, M., Pillai, V. V., Goddard, J. M., Park, H. G., Kothapalli, K. S., Ross, D. A., … Selvaraj, V. (2017). Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLOS ONE, 12(2), e0171708. doi:10.1371/journal.pone.0171708 es_ES
dc.description.references Dodos, G. S., Karonis, D., Zannikos, F., & Lois, E. (2015). Renewable fuels and lubricants from Lunaria annua L. Industrial Crops and Products, 75, 43-50. doi:10.1016/j.indcrop.2015.05.046 es_ES
dc.description.references Miwa, T. K. (1971). Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. Journal of the American Oil Chemists Society, 48(6), 259-264. doi:10.1007/bf02638458 es_ES
dc.description.references Kleiman, R., & Spencer, G. F. (1982). Search for new industrial oils: XVI. Umbelliflorae-seed oils rich in petroselinic acid. Journal of the American Oil Chemists’ Society, 59(1), 29-38. doi:10.1007/bf02670064 es_ES
dc.description.references Gill, S. S., Tsolakis, A., Dearn, K. D., & Rodríguez-Fernández, J. (2011). Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 37(4), 503-523. doi:10.1016/j.pecs.2010.09.001 es_ES
dc.description.references Rodríguez-Fernández, J., Lapuerta, M., & Sánchez-Valdepeñas, J. (2017). Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 104, 30-39. doi:10.1016/j.renene.2016.11.059 es_ES
dc.description.references Musavi, A., Cizmeci, M., Tekin, A., & Kayahan, M. (2008). Effects of hydrogenation parameters ontrans isomer formation, selectivity and melting properties of fat. European Journal of Lipid Science and Technology, 110(3), 254-260. doi:10.1002/ejlt.200700118 es_ES
dc.description.references Sukjit, E., Herreros, J. M., Dearn, K. D., García-Contreras, R., & Tsolakis, A. (2012). The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends. Energy, 42(1), 364-374. doi:10.1016/j.energy.2012.03.041 es_ES
dc.description.references Knothe, G., & Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity†. Energy & Fuels, 19(3), 1192-1200. doi:10.1021/ef049684c es_ES
dc.description.references Lapuerta, M., Sánchez-Valdepeñas, J., Bolonio, D., & Sukjit, E. (2016). Effect of fatty acid composition of methyl and ethyl esters on the lubricity at different humidities. Fuel, 184, 202-210. doi:10.1016/j.fuel.2016.07.019 es_ES
dc.description.references Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25. doi:10.1016/j.biortech.2010.06.035 es_ES
dc.description.references Chamorro R. Lubricity of a paraffinic surrogated fuel blended with non-conventional methyl esters. Final Degree Project in Mechanical Engineering, University of Castilla-La Mancha, Ciudad Real, 2018 (in Spanish). es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem