- -

An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms

Mostrar el registro completo del ítem

De Luis-Fernández, B.; Llopis-Lorente, A.; Rincón, P.; Gadea Vacas, J.; Sancenón Galarza, F.; Aznar, E.; Villalonga, R.... (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition. 58(42):14986-14990. https://doi.org/10.1002/anie.201908867

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143003

Ficheros en el ítem

Metadatos del ítem

Título: An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms
Autor: de Luis-Fernández, Beatriz Llopis-Lorente, Antoni Rincón, Paola Gadea Vacas, José Sancenón Galarza, Félix Aznar, Elena Villalonga, Reynaldo Murguía, Jose R. Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The construction of communication models at the micro¿/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. ...[+]
Palabras clave: Abiotic nanodevices , Mesoporous materials , Microorganisms , Molecular communication , Nanonetworks
Derechos de uso: Reserva de todos los derechos
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201908867
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/anie.201908867
Código del Proyecto:
info:eu-repo/grantAgreement/CAM//IND2017%2FBMD-7642/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87954-P/ES/NANOMAQUINAS INTELIGENTES BASADAS EN NANOMATERIALES JANUS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Descripción: "This is the peer reviewed version of the following article: Luis, B., Llopis-Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., Villalonga, R., Murguía, J. R., & Martínez-Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986 14990. https://doi.org/10.1002/anie.201908867, which has been published in final form at https://doi.org/10.1002/anie.201908867. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
B.dL. is grateful to the Spanish Government for her FPU PhD fellowship. The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P), the Generalitat Valenciana ...[+]
Tipo: Artículo

References

Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001

Fleischer, J., & Krieger, J. (2018). Insect Pheromone Receptors – Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience, 12. doi:10.3389/fncel.2018.00425

Nahavandi, S., Tang, S.-Y., Baratchi, S., Soffe, R., Nahavandi, S., Kalantar-zadeh, K., … Khoshmanesh, K. (2014). Microfluidic Platforms for the Investigation of Intercellular Signalling Mechanisms. Small, 10(23), 4810-4826. doi:10.1002/smll.201401444 [+]
Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001

Fleischer, J., & Krieger, J. (2018). Insect Pheromone Receptors – Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience, 12. doi:10.3389/fncel.2018.00425

Nahavandi, S., Tang, S.-Y., Baratchi, S., Soffe, R., Nahavandi, S., Kalantar-zadeh, K., … Khoshmanesh, K. (2014). Microfluidic Platforms for the Investigation of Intercellular Signalling Mechanisms. Small, 10(23), 4810-4826. doi:10.1002/smll.201401444

Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279. doi:10.1016/j.comnet.2008.04.001

Tuccitto, N., Li-Destri, G., Messina, G. M. L., & Marletta, G. (2018). Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 20(48), 30312-30320. doi:10.1039/c8cp05643a

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2018). Toward chemical communication between nanodevices. Nano Today, 18, 8-11. doi:10.1016/j.nantod.2017.09.003

Marzo, J. L., Jornet, J. M., & Pierobon, M. (2019). Nanonetworks in Biomedical Applications. Current Drug Targets, 20(8), 800-807. doi:10.2174/1389450120666190115152613

Kwon, E. J., Lo, J. H., & Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences, 112(47), 14460-14466. doi:10.1073/pnas.1508522112

Benenson, Y. (2012). Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 13(7), 455-468. doi:10.1038/nrg3197

Barcena Menendez, D., Senthivel, V. R., & Isalan, M. (2015). Sender–receiver systems and applying information theory for quantitative synthetic biology. Current Opinion in Biotechnology, 31, 101-107. doi:10.1016/j.copbio.2014.08.005

Malak, D., & Akan, O. B. (2012). Molecular communication nanonetworks inside human body. Nano Communication Networks, 3(1), 19-35. doi:10.1016/j.nancom.2011.10.002

Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156

Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., & Luisi, P. L. (2012). Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems, 109(1), 24-34. doi:10.1016/j.biosystems.2012.01.002

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580

Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580

Lentini, R., Yeh Martín, N., & Mansy, S. S. (2016). Communicating artificial cells. Current Opinion in Chemical Biology, 34, 53-61. doi:10.1016/j.cbpa.2016.06.013

Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M., & Tan, C. (2018). Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS Applied Materials & Interfaces, 10(36), 30137-30146. doi:10.1021/acsami.8b10029

Ariga, K., Jia, X., Song, J., Hsieh, C., & Hsu, S. (2019). Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 5(6), 692-702. doi:10.1002/cnma.201900207

Lentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., … Mansy, S. S. (2014). Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nature Communications, 5(1). doi:10.1038/ncomms5012

Lentini, R., Martín, N. Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., … Mansy, S. S. (2017). Two-Way Chemical Communication between Artificial and Natural Cells. ACS Central Science, 3(2), 117-123. doi:10.1021/acscentsci.6b00330

Rampioni, G., D’Angelo, F., Messina, M., Zennaro, A., Kuruma, Y., Tofani, D., … Stano, P. (2018). Synthetic cells produce a quorum sensing chemical signal perceived byPseudomonas aeruginosa. Chemical Communications, 54(17), 2090-2093. doi:10.1039/c7cc09678j

Schwarz-Schilling, M., Aufinger, L., Mückl, A., & Simmel, F. C. (2016). Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integrative Biology, 8(4), 564-570. doi:10.1039/c5ib00301f

Fernandes, R., Roy, V., Wu, H.-C., & Bentley, W. E. (2010). Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotechnology, 5(3), 213-217. doi:10.1038/nnano.2009.457

Gupta, A., Terrell, J. L., Fernandes, R., Dowling, M. B., Payne, G. F., Raghavan, S. R., & Bentley, W. E. (2012). Encapsulated fusion protein confers «sense and respond» activity to chitosan-alginate capsules to manipulate bacterial quorum sensing. Biotechnology and Bioengineering, 110(2), 552-562. doi:10.1002/bit.24711

Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. doi:10.1038/nature02026

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663

Endo-Ichikawa, Y., Kohno, H., Tokunaga, R., & Taketani, S. (1995). Induction in the gene RNR3 in saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Biochemical Pharmacology, 50(10), 1695-1699. doi:10.1016/0006-2952(95)02071-3

Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723

Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Barbosa, P. M. G., de Morais, T. P., de Andrade Silva, C. A., da Silva Santos, F. R., Garcia, N. F. L., Fonseca, G. G., … da Paz, M. F. (2018). Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Preparative Biochemistry & Biotechnology, 48(6), 506-513. doi:10.1080/10826068.2018.1466155

Ashe, M. P., De Long, S. K., & Sachs, A. B. (2000). Glucose Depletion Rapidly Inhibits Translation Initiation in Yeast. Molecular Biology of the Cell, 11(3), 833-848. doi:10.1091/mbc.11.3.833

Ariga, K., Leong, D. T., & Mori, T. (2017). Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. Advanced Functional Materials, 28(27), 1702905. doi:10.1002/adfm.201702905

Xu, C., Hu, S., & Chen, X. (2016). Artificial cells: from basic science to applications. Materials Today, 19(9), 516-532. doi:10.1016/j.mattod.2016.02.020

Hauert, S., & Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 32(9), 448-455. doi:10.1016/j.tibtech.2014.06.010

Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). Moving forward with molecular communication: from theory to human health applications [point of view]. Proceedings of the IEEE, 107(5), 858-865. doi:10.1109/jproc.2019.2913890

Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: engineering and application of microbial symbioses. Current Opinion in Biotechnology, 36, 40-49. doi:10.1016/j.copbio.2015.08.008

Peng, F., Tu, Y., & Wilson, D. A. (2017). Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chemical Society Reviews, 46(17), 5289-5310. doi:10.1039/c6cs00885b

Morris, E., Chavez, M., & Tan, C. (2016). Dynamic biomaterials: toward engineering autonomous feedback. Current Opinion in Biotechnology, 39, 97-104. doi:10.1016/j.copbio.2016.02.032

Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie International Edition, 54(40), 11662-11665. doi:10.1002/anie.201504186

Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie, 127(40), 11828-11831. doi:10.1002/ange.201504186

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem