- -

An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Luis-Fernández, Beatriz es_ES
dc.contributor.author Llopis-Lorente, Antoni es_ES
dc.contributor.author Rincón, Paola es_ES
dc.contributor.author Gadea Vacas, José es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Villalonga, Reynaldo es_ES
dc.contributor.author Murguía, Jose R. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2020-05-13T03:02:56Z
dc.date.available 2020-05-13T03:02:56Z
dc.date.issued 2019-10-14 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143003
dc.description "This is the peer reviewed version of the following article: Luis, B., Llopis-Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., Villalonga, R., Murguía, J. R., & Martínez-Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986 14990. https://doi.org/10.1002/anie.201908867, which has been published in final form at https://doi.org/10.1002/anie.201908867. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The construction of communication models at the micro¿/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. However, this area remains almost unexplored. Herein, we report, as a proof of concept, a stimuli¿responsive interactive paradigm of communication between yeasts (as a model microorganism) and enzyme¿controlled Janus Au¿mesoporous silica nanoparticles. In the presence of the stimulus, the information flows from the microorganism to the nanodevice, and then returns from the nanodevice to the microorganism as a feedback. es_ES
dc.description.sponsorship B.dL. is grateful to the Spanish Government for her FPU PhD fellowship. The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P), the Generalitat Valenciana (project PROMETEO2018/024), the Comunidad de Madrid (Project IND2017/BMD-7642) and CIBER-BBN (NANOCOM project) for support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Abiotic nanodevices es_ES
dc.subject Mesoporous materials es_ES
dc.subject Microorganisms es_ES
dc.subject Molecular communication es_ES
dc.subject Nanonetworks es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.201908867 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//IND2017%2FBMD-7642/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87954-P/ES/NANOMAQUINAS INTELIGENTES BASADAS EN NANOMATERIALES JANUS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation De Luis-Fernández, B.; Llopis-Lorente, A.; Rincón, P.; Gadea Vacas, J.; Sancenón Galarza, F.; Aznar, E.; Villalonga, R.... (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition. 58(42):14986-14990. https://doi.org/10.1002/anie.201908867 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/anie.201908867 es_ES
dc.description.upvformatpinicio 14986 es_ES
dc.description.upvformatpfin 14990 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 42 es_ES
dc.identifier.pmid 31424153 es_ES
dc.relation.pasarela S\398534 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001 es_ES
dc.description.references Fleischer, J., & Krieger, J. (2018). Insect Pheromone Receptors – Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience, 12. doi:10.3389/fncel.2018.00425 es_ES
dc.description.references Nahavandi, S., Tang, S.-Y., Baratchi, S., Soffe, R., Nahavandi, S., Kalantar-zadeh, K., … Khoshmanesh, K. (2014). Microfluidic Platforms for the Investigation of Intercellular Signalling Mechanisms. Small, 10(23), 4810-4826. doi:10.1002/smll.201401444 es_ES
dc.description.references Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279. doi:10.1016/j.comnet.2008.04.001 es_ES
dc.description.references Tuccitto, N., Li-Destri, G., Messina, G. M. L., & Marletta, G. (2018). Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 20(48), 30312-30320. doi:10.1039/c8cp05643a es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2018). Toward chemical communication between nanodevices. Nano Today, 18, 8-11. doi:10.1016/j.nantod.2017.09.003 es_ES
dc.description.references Marzo, J. L., Jornet, J. M., & Pierobon, M. (2019). Nanonetworks in Biomedical Applications. Current Drug Targets, 20(8), 800-807. doi:10.2174/1389450120666190115152613 es_ES
dc.description.references Kwon, E. J., Lo, J. H., & Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences, 112(47), 14460-14466. doi:10.1073/pnas.1508522112 es_ES
dc.description.references Benenson, Y. (2012). Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 13(7), 455-468. doi:10.1038/nrg3197 es_ES
dc.description.references Barcena Menendez, D., Senthivel, V. R., & Isalan, M. (2015). Sender–receiver systems and applying information theory for quantitative synthetic biology. Current Opinion in Biotechnology, 31, 101-107. doi:10.1016/j.copbio.2014.08.005 es_ES
dc.description.references Malak, D., & Akan, O. B. (2012). Molecular communication nanonetworks inside human body. Nano Communication Networks, 3(1), 19-35. doi:10.1016/j.nancom.2011.10.002 es_ES
dc.description.references Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156 es_ES
dc.description.references Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., & Luisi, P. L. (2012). Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems, 109(1), 24-34. doi:10.1016/j.biosystems.2012.01.002 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580 es_ES
dc.description.references Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 es_ES
dc.description.references Lentini, R., Yeh Martín, N., & Mansy, S. S. (2016). Communicating artificial cells. Current Opinion in Chemical Biology, 34, 53-61. doi:10.1016/j.cbpa.2016.06.013 es_ES
dc.description.references Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M., & Tan, C. (2018). Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS Applied Materials & Interfaces, 10(36), 30137-30146. doi:10.1021/acsami.8b10029 es_ES
dc.description.references Ariga, K., Jia, X., Song, J., Hsieh, C., & Hsu, S. (2019). Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 5(6), 692-702. doi:10.1002/cnma.201900207 es_ES
dc.description.references Lentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., … Mansy, S. S. (2014). Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nature Communications, 5(1). doi:10.1038/ncomms5012 es_ES
dc.description.references Lentini, R., Martín, N. Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., … Mansy, S. S. (2017). Two-Way Chemical Communication between Artificial and Natural Cells. ACS Central Science, 3(2), 117-123. doi:10.1021/acscentsci.6b00330 es_ES
dc.description.references Rampioni, G., D’Angelo, F., Messina, M., Zennaro, A., Kuruma, Y., Tofani, D., … Stano, P. (2018). Synthetic cells produce a quorum sensing chemical signal perceived byPseudomonas aeruginosa. Chemical Communications, 54(17), 2090-2093. doi:10.1039/c7cc09678j es_ES
dc.description.references Schwarz-Schilling, M., Aufinger, L., Mückl, A., & Simmel, F. C. (2016). Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integrative Biology, 8(4), 564-570. doi:10.1039/c5ib00301f es_ES
dc.description.references Fernandes, R., Roy, V., Wu, H.-C., & Bentley, W. E. (2010). Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotechnology, 5(3), 213-217. doi:10.1038/nnano.2009.457 es_ES
dc.description.references Gupta, A., Terrell, J. L., Fernandes, R., Dowling, M. B., Payne, G. F., Raghavan, S. R., & Bentley, W. E. (2012). Encapsulated fusion protein confers «sense and respond» activity to chitosan-alginate capsules to manipulate bacterial quorum sensing. Biotechnology and Bioengineering, 110(2), 552-562. doi:10.1002/bit.24711 es_ES
dc.description.references Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. doi:10.1038/nature02026 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Endo-Ichikawa, Y., Kohno, H., Tokunaga, R., & Taketani, S. (1995). Induction in the gene RNR3 in saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Biochemical Pharmacology, 50(10), 1695-1699. doi:10.1016/0006-2952(95)02071-3 es_ES
dc.description.references Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723 es_ES
dc.description.references Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Barbosa, P. M. G., de Morais, T. P., de Andrade Silva, C. A., da Silva Santos, F. R., Garcia, N. F. L., Fonseca, G. G., … da Paz, M. F. (2018). Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Preparative Biochemistry & Biotechnology, 48(6), 506-513. doi:10.1080/10826068.2018.1466155 es_ES
dc.description.references Ashe, M. P., De Long, S. K., & Sachs, A. B. (2000). Glucose Depletion Rapidly Inhibits Translation Initiation in Yeast. Molecular Biology of the Cell, 11(3), 833-848. doi:10.1091/mbc.11.3.833 es_ES
dc.description.references Ariga, K., Leong, D. T., & Mori, T. (2017). Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. Advanced Functional Materials, 28(27), 1702905. doi:10.1002/adfm.201702905 es_ES
dc.description.references Xu, C., Hu, S., & Chen, X. (2016). Artificial cells: from basic science to applications. Materials Today, 19(9), 516-532. doi:10.1016/j.mattod.2016.02.020 es_ES
dc.description.references Hauert, S., & Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 32(9), 448-455. doi:10.1016/j.tibtech.2014.06.010 es_ES
dc.description.references Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). Moving forward with molecular communication: from theory to human health applications [point of view]. Proceedings of the IEEE, 107(5), 858-865. doi:10.1109/jproc.2019.2913890 es_ES
dc.description.references Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: engineering and application of microbial symbioses. Current Opinion in Biotechnology, 36, 40-49. doi:10.1016/j.copbio.2015.08.008 es_ES
dc.description.references Peng, F., Tu, Y., & Wilson, D. A. (2017). Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chemical Society Reviews, 46(17), 5289-5310. doi:10.1039/c6cs00885b es_ES
dc.description.references Morris, E., Chavez, M., & Tan, C. (2016). Dynamic biomaterials: toward engineering autonomous feedback. Current Opinion in Biotechnology, 39, 97-104. doi:10.1016/j.copbio.2016.02.032 es_ES
dc.description.references Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie International Edition, 54(40), 11662-11665. doi:10.1002/anie.201504186 es_ES
dc.description.references Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie, 127(40), 11828-11831. doi:10.1002/ange.201504186 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem