Mostrar el registro sencillo del ítem
dc.contributor.author | de Luis-Fernández, Beatriz | es_ES |
dc.contributor.author | Llopis-Lorente, Antoni | es_ES |
dc.contributor.author | Rincón, Paola | es_ES |
dc.contributor.author | Gadea Vacas, José | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Aznar, Elena | es_ES |
dc.contributor.author | Villalonga, Reynaldo | es_ES |
dc.contributor.author | Murguía, Jose R. | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2020-05-13T03:02:56Z | |
dc.date.available | 2020-05-13T03:02:56Z | |
dc.date.issued | 2019-10-14 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143003 | |
dc.description | "This is the peer reviewed version of the following article: Luis, B., Llopis-Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., Villalonga, R., Murguía, J. R., & Martínez-Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986 14990. https://doi.org/10.1002/anie.201908867, which has been published in final form at https://doi.org/10.1002/anie.201908867. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] The construction of communication models at the micro¿/nanoscale involving abiotic nanodevices and living organisms has the potential to open a wide range of applications in biomedical and communication technologies. However, this area remains almost unexplored. Herein, we report, as a proof of concept, a stimuli¿responsive interactive paradigm of communication between yeasts (as a model microorganism) and enzyme¿controlled Janus Au¿mesoporous silica nanoparticles. In the presence of the stimulus, the information flows from the microorganism to the nanodevice, and then returns from the nanodevice to the microorganism as a feedback. | es_ES |
dc.description.sponsorship | B.dL. is grateful to the Spanish Government for her FPU PhD fellowship. The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P), the Generalitat Valenciana (project PROMETEO2018/024), the Comunidad de Madrid (Project IND2017/BMD-7642) and CIBER-BBN (NANOCOM project) for support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Abiotic nanodevices | es_ES |
dc.subject | Mesoporous materials | es_ES |
dc.subject | Microorganisms | es_ES |
dc.subject | Molecular communication | es_ES |
dc.subject | Nanonetworks | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201908867 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//IND2017%2FBMD-7642/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87954-P/ES/NANOMAQUINAS INTELIGENTES BASADAS EN NANOMATERIALES JANUS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | De Luis-Fernández, B.; Llopis-Lorente, A.; Rincón, P.; Gadea Vacas, J.; Sancenón Galarza, F.; Aznar, E.; Villalonga, R.... (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition. 58(42):14986-14990. https://doi.org/10.1002/anie.201908867 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.201908867 | es_ES |
dc.description.upvformatpinicio | 14986 | es_ES |
dc.description.upvformatpfin | 14990 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 42 | es_ES |
dc.identifier.pmid | 31424153 | es_ES |
dc.relation.pasarela | S\398534 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319-346. doi:10.1146/annurev.cellbio.21.012704.131001 | es_ES |
dc.description.references | Fleischer, J., & Krieger, J. (2018). Insect Pheromone Receptors – Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience, 12. doi:10.3389/fncel.2018.00425 | es_ES |
dc.description.references | Nahavandi, S., Tang, S.-Y., Baratchi, S., Soffe, R., Nahavandi, S., Kalantar-zadeh, K., … Khoshmanesh, K. (2014). Microfluidic Platforms for the Investigation of Intercellular Signalling Mechanisms. Small, 10(23), 4810-4826. doi:10.1002/smll.201401444 | es_ES |
dc.description.references | Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279. doi:10.1016/j.comnet.2008.04.001 | es_ES |
dc.description.references | Tuccitto, N., Li-Destri, G., Messina, G. M. L., & Marletta, G. (2018). Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 20(48), 30312-30320. doi:10.1039/c8cp05643a | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2018). Toward chemical communication between nanodevices. Nano Today, 18, 8-11. doi:10.1016/j.nantod.2017.09.003 | es_ES |
dc.description.references | Marzo, J. L., Jornet, J. M., & Pierobon, M. (2019). Nanonetworks in Biomedical Applications. Current Drug Targets, 20(8), 800-807. doi:10.2174/1389450120666190115152613 | es_ES |
dc.description.references | Kwon, E. J., Lo, J. H., & Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences, 112(47), 14460-14466. doi:10.1073/pnas.1508522112 | es_ES |
dc.description.references | Benenson, Y. (2012). Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 13(7), 455-468. doi:10.1038/nrg3197 | es_ES |
dc.description.references | Barcena Menendez, D., Senthivel, V. R., & Isalan, M. (2015). Sender–receiver systems and applying information theory for quantitative synthetic biology. Current Opinion in Biotechnology, 31, 101-107. doi:10.1016/j.copbio.2014.08.005 | es_ES |
dc.description.references | Malak, D., & Akan, O. B. (2012). Molecular communication nanonetworks inside human body. Nano Communication Networks, 3(1), 19-35. doi:10.1016/j.nancom.2011.10.002 | es_ES |
dc.description.references | Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156 | es_ES |
dc.description.references | Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., & Luisi, P. L. (2012). Semi-synthetic minimal cells as a tool for biochemical ICT. Biosystems, 109(1), 24-34. doi:10.1016/j.biosystems.2012.01.002 | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580 | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 | es_ES |
dc.description.references | Lentini, R., Yeh Martín, N., & Mansy, S. S. (2016). Communicating artificial cells. Current Opinion in Chemical Biology, 34, 53-61. doi:10.1016/j.cbpa.2016.06.013 | es_ES |
dc.description.references | Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M., & Tan, C. (2018). Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS Applied Materials & Interfaces, 10(36), 30137-30146. doi:10.1021/acsami.8b10029 | es_ES |
dc.description.references | Ariga, K., Jia, X., Song, J., Hsieh, C., & Hsu, S. (2019). Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 5(6), 692-702. doi:10.1002/cnma.201900207 | es_ES |
dc.description.references | Lentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., … Mansy, S. S. (2014). Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nature Communications, 5(1). doi:10.1038/ncomms5012 | es_ES |
dc.description.references | Lentini, R., Martín, N. Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., … Mansy, S. S. (2017). Two-Way Chemical Communication between Artificial and Natural Cells. ACS Central Science, 3(2), 117-123. doi:10.1021/acscentsci.6b00330 | es_ES |
dc.description.references | Rampioni, G., D’Angelo, F., Messina, M., Zennaro, A., Kuruma, Y., Tofani, D., … Stano, P. (2018). Synthetic cells produce a quorum sensing chemical signal perceived byPseudomonas aeruginosa. Chemical Communications, 54(17), 2090-2093. doi:10.1039/c7cc09678j | es_ES |
dc.description.references | Schwarz-Schilling, M., Aufinger, L., Mückl, A., & Simmel, F. C. (2016). Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integrative Biology, 8(4), 564-570. doi:10.1039/c5ib00301f | es_ES |
dc.description.references | Fernandes, R., Roy, V., Wu, H.-C., & Bentley, W. E. (2010). Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotechnology, 5(3), 213-217. doi:10.1038/nnano.2009.457 | es_ES |
dc.description.references | Gupta, A., Terrell, J. L., Fernandes, R., Dowling, M. B., Payne, G. F., Raghavan, S. R., & Bentley, W. E. (2012). Encapsulated fusion protein confers «sense and respond» activity to chitosan-alginate capsules to manipulate bacterial quorum sensing. Biotechnology and Bioengineering, 110(2), 552-562. doi:10.1002/bit.24711 | es_ES |
dc.description.references | Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. doi:10.1038/nature02026 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 | es_ES |
dc.description.references | Endo-Ichikawa, Y., Kohno, H., Tokunaga, R., & Taketani, S. (1995). Induction in the gene RNR3 in saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Biochemical Pharmacology, 50(10), 1695-1699. doi:10.1016/0006-2952(95)02071-3 | es_ES |
dc.description.references | Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723 | es_ES |
dc.description.references | Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Barbosa, P. M. G., de Morais, T. P., de Andrade Silva, C. A., da Silva Santos, F. R., Garcia, N. F. L., Fonseca, G. G., … da Paz, M. F. (2018). Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Preparative Biochemistry & Biotechnology, 48(6), 506-513. doi:10.1080/10826068.2018.1466155 | es_ES |
dc.description.references | Ashe, M. P., De Long, S. K., & Sachs, A. B. (2000). Glucose Depletion Rapidly Inhibits Translation Initiation in Yeast. Molecular Biology of the Cell, 11(3), 833-848. doi:10.1091/mbc.11.3.833 | es_ES |
dc.description.references | Ariga, K., Leong, D. T., & Mori, T. (2017). Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. Advanced Functional Materials, 28(27), 1702905. doi:10.1002/adfm.201702905 | es_ES |
dc.description.references | Xu, C., Hu, S., & Chen, X. (2016). Artificial cells: from basic science to applications. Materials Today, 19(9), 516-532. doi:10.1016/j.mattod.2016.02.020 | es_ES |
dc.description.references | Hauert, S., & Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 32(9), 448-455. doi:10.1016/j.tibtech.2014.06.010 | es_ES |
dc.description.references | Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). Moving forward with molecular communication: from theory to human health applications [point of view]. Proceedings of the IEEE, 107(5), 858-865. doi:10.1109/jproc.2019.2913890 | es_ES |
dc.description.references | Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N., & Silver, P. A. (2015). Better together: engineering and application of microbial symbioses. Current Opinion in Biotechnology, 36, 40-49. doi:10.1016/j.copbio.2015.08.008 | es_ES |
dc.description.references | Peng, F., Tu, Y., & Wilson, D. A. (2017). Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chemical Society Reviews, 46(17), 5289-5310. doi:10.1039/c6cs00885b | es_ES |
dc.description.references | Morris, E., Chavez, M., & Tan, C. (2016). Dynamic biomaterials: toward engineering autonomous feedback. Current Opinion in Biotechnology, 39, 97-104. doi:10.1016/j.copbio.2016.02.032 | es_ES |
dc.description.references | Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie International Edition, 54(40), 11662-11665. doi:10.1002/anie.201504186 | es_ES |
dc.description.references | Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie, 127(40), 11828-11831. doi:10.1002/ange.201504186 | es_ES |