- -

New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems

Show full item record

Poyatos-Racionero, E.; Pérez-Esteve, É.; Marcos Martínez, MD.; Barat Baviera, JM.; Martínez-Máñez, R.; Aznar, E.; Bernardos Bau, A. (2019). New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems. ChemistryOpen. 8(8):1052-1056. https://doi.org/10.1002/open.201900092

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143005

Files in this item

Item Metadata

Title: New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems
Author: Poyatos-Racionero, Elisa Pérez-Esteve, Édgar Marcos Martínez, María Dolores Barat Baviera, José Manuel Martínez-Máñez, Ramón Aznar, Elena Bernardos Bau, Andrea
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] A new delivery microdevice, based on hydrophobic oleic acid¿capped mesoporous silica particles and able to payload release in the presence of surfactants, has been developed. The oleic acid functionalization confers ...[+]
Subjects: Controlled delivery , Mesoporous materials , Molecular gate , Oleic acid , Surfactants
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
ChemistryOpen. (issn: 2191-1363 )
DOI: 10.1002/open.201900092
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/open.201900092
Project ID:
GENERALITAT VALENCIANA/ACIF/2016/023
...[+]
GENERALITAT VALENCIANA/ACIF/2016/023
MINISTERIO DE ECONOMIA Y EMPRESA/IJCI-2014-21534
MINISTERIO DE ECONOMIA Y EMPRESA/AGL2015-70235-C2-2-R
MINISTERIO DE ECONOMIA Y EMPRESA/MAT2015-64139-C4-1-R
MINISTERIO DE ECONOMIA Y EMPRESA/AGL2015-70235-C2-1-R
GENERALITAT VALENCIANA/PROMETEO/2018/024
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
[-]
Thanks:
The authors want to thank the Spanish Government (projects MAT2015-64139-C4-1-R, AGL2015-70235-C2-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and RTI2018-100910-B-C41, RTI2018-101599-B-C22 and RTI2018-101599-B-C21 ...[+]
Type: Artículo

References

HARRISON, K. (2007). Introduction to polymeric drug delivery systems. Biomedical Polymers, 33-56. doi:10.1533/9781845693640.33

Bourganis, V., Karamanidou, T., Kammona, O., & Kiparissides, C. (2017). Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 111, 44-60. doi:10.1016/j.ejpb.2016.11.005

El-Safty, S. A., Shenashen, M. A., & Ismail, A. A. (2012). A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chemical Communications, 48(77), 9652. doi:10.1039/c2cc34788a [+]
HARRISON, K. (2007). Introduction to polymeric drug delivery systems. Biomedical Polymers, 33-56. doi:10.1533/9781845693640.33

Bourganis, V., Karamanidou, T., Kammona, O., & Kiparissides, C. (2017). Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 111, 44-60. doi:10.1016/j.ejpb.2016.11.005

El-Safty, S. A., Shenashen, M. A., & Ismail, A. A. (2012). A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chemical Communications, 48(77), 9652. doi:10.1039/c2cc34788a

El-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Mesocylindrical Aluminosilica Monolith Biocaptors for Size-Selective Macromolecule Cargos. Advanced Functional Materials, 22(14), 3013-3021. doi:10.1002/adfm.201200393

Shenashen, M. A., Shahat, A., & El-Safty, S. A. (2013). Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor. Journal of Hazardous Materials, 244-245, 726-735. doi:10.1016/j.jhazmat.2012.11.006

El-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Encapsulation of proteins into tunable and giant mesocage alumina. Chemical Communications, 48(53), 6708. doi:10.1039/c2cc30725a

El-Safty, S. A., Shenashen, M. A., & Shahat, A. (2013). Tailor-Made Micro-Object Optical Sensor Based on Mesoporous Pellets for Visual Monitoring and Removal of Toxic Metal Ions from Aqueous Media. Small, 9(13), 2288-2296. doi:10.1002/smll.201202407

El-Safty, S. A., & Shenashen, M. A. (2013). Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors and Actuators B: Chemical, 183, 58-70. doi:10.1016/j.snb.2013.03.041

El-Sewify, I. M., Shenashen, M. A., Shahat, A., Yamaguchi, H., Selim, M. M., Khalil, M. M. H., & El-Safty, S. A. (2018). Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 198, 438-448. doi:10.1016/j.jlumin.2018.02.028

Emran, M. Y., El-Safty, S. A., Shenashen, M. A., & Minowa, T. (2019). A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical, 284, 456-467. doi:10.1016/j.snb.2018.12.142

Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751

Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b

Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b

De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g

Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049

González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565

SHIMIZU, M. (2010). Interaction between Food Substances and the Intestinal Epithelium. Bioscience, Biotechnology, and Biochemistry, 74(2), 232-241. doi:10.1271/bbb.90730

Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880

Han, N., Wang, Y., Bai, J., Liu, J., Wang, Y., Gao, Y., … Wang, S. (2016). Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous and Mesoporous Materials, 219, 209-218. doi:10.1016/j.micromeso.2015.08.006

Zhang, J., Desai, D., & Rosenholm, J. M. (2013). Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers. Advanced Functional Materials, 24(16), 2352-2360. doi:10.1002/adfm.201302995

Van Schooneveld, M. M., Vucic, E., Koole, R., Zhou, Y., Stocks, J., Cormode, D. P., … Mulder, W. J. M. (2008). Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality Investigation. Nano Letters, 8(8), 2517-2525. doi:10.1021/nl801596a

See Supporting information for details.

Said, H. M. (2011). Intestinal absorption of water-soluble vitamins in health and disease. Biochemical Journal, 437(3), 357-372. doi:10.1042/bj20110326

Thakur, K., Tomar, S. K., Singh, A. K., Mandal, S., & Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57(17), 3650-3660. doi:10.1080/10408398.2016.1145104

LANE, M., & ALFREY, C. P. (1965). The Anemia of Human Riboflavin Deficiency. Blood, 25(4), 432-442. doi:10.1182/blood.v25.4.432.432

Bosch, A. M., Abeling, N. G. G. M., IJlst, L., Knoester, H., van der Pol, W. L., Stroomer, A. E. M., … Waterham, H. R. (2010). Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. Journal of Inherited Metabolic Disease, 34(1), 159-164. doi:10.1007/s10545-010-9242-z

Said, H. M., Ortiz, A., Moyer, M. P., & Yanagawa, N. (2000). Riboflavin uptake by human-derived colonic epithelial NCM460 cells. American Journal of Physiology-Cell Physiology, 278(2), C270-C276. doi:10.1152/ajpcell.2000.278.2.c270

Nakano, E., Mushtaq, S., Heath, P. R., Lee, E.-S., Bury, J. P., Riley, S. A., … Corfe, B. M. (2010). Riboflavin Depletion Impairs Cell Proliferation in Adult Human Duodenum: Identification of Potential Effectors. Digestive Diseases and Sciences, 56(4), 1007-1019. doi:10.1007/s10620-010-1374-3

Li, S.-S., Xu, Y.-W., Wu, J.-Y., Tan, H.-Z., Wu, Z.-Y., Xue, Y.-J., … Xu, L.-Y. (2016). Plasma Riboflavin Level is Associated with Risk, Relapse, and Survival of Esophageal Squamous Cell Carcinoma. Nutrition and Cancer, 69(1), 21-28. doi:10.1080/01635581.2017.1247890

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record