- -

New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Poyatos-Racionero, Elisa es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Bernardos Bau, Andrea es_ES
dc.date.accessioned 2020-05-13T03:02:59Z
dc.date.available 2020-05-13T03:02:59Z
dc.date.issued 2019-08-26 es_ES
dc.identifier.issn 2191-1363 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143005
dc.description.abstract [EN] A new delivery microdevice, based on hydrophobic oleic acid¿capped mesoporous silica particles and able to payload release in the presence of surfactants, has been developed. The oleic acid functionalization confers to the system a high hydrophobic character, which avoids cargo release unless surfactant molecules are present. The performance of this oleic¿acid capped microdevice in the presence of different surfactants is presented and its zero¿release operation in the absence of surfactants is demonstrated. es_ES
dc.description.sponsorship The authors want to thank the Spanish Government (projects MAT2015-64139-C4-1-R, AGL2015-70235-C2-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and RTI2018-100910-B-C41, RTI2018-101599-B-C22 and RTI2018-101599-B-C21 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (project PROMETEO/2018/024) for support. E.P.-R. thanks the Generalitat Valenciana for her predoctoral fellowship. A.B. wants to acknowledge the Spanish Government for the financial support Juan de la Cierva Incorporación IJCI-2014-21534. The authors also thank the Electron Microscopy Service at the UPV for support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemistryOpen es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Controlled delivery es_ES
dc.subject Mesoporous materials es_ES
dc.subject Molecular gate es_ES
dc.subject Oleic acid es_ES
dc.subject Surfactants es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/open.201900092 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-1-R/ES/SISTEMAS HIBRIDOS BASADOS EN SOPORTES BIOCOMPATIBLES PARA EL DESARROLLO DE ANTIMICROBIANOS A PARTIR DE SUSTANCIAS NATURALES Y LIBERACION CONTROLADA DE COMPUESTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Poyatos-Racionero, E.; Pérez-Esteve, É.; Marcos Martínez, MD.; Barat Baviera, JM.; Martínez-Máñez, R.; Aznar, E.; Bernardos Bau, A. (2019). New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems. ChemistryOpen. 8(8):1052-1056. https://doi.org/10.1002/open.201900092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/open.201900092 es_ES
dc.description.upvformatpinicio 1052 es_ES
dc.description.upvformatpfin 1056 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 31463170 es_ES
dc.identifier.pmcid PMC6709519 es_ES
dc.relation.pasarela S\393841 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references HARRISON, K. (2007). Introduction to polymeric drug delivery systems. Biomedical Polymers, 33-56. doi:10.1533/9781845693640.33 es_ES
dc.description.references Bourganis, V., Karamanidou, T., Kammona, O., & Kiparissides, C. (2017). Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 111, 44-60. doi:10.1016/j.ejpb.2016.11.005 es_ES
dc.description.references El-Safty, S. A., Shenashen, M. A., & Ismail, A. A. (2012). A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chemical Communications, 48(77), 9652. doi:10.1039/c2cc34788a es_ES
dc.description.references El-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Mesocylindrical Aluminosilica Monolith Biocaptors for Size-Selective Macromolecule Cargos. Advanced Functional Materials, 22(14), 3013-3021. doi:10.1002/adfm.201200393 es_ES
dc.description.references Shenashen, M. A., Shahat, A., & El-Safty, S. A. (2013). Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor. Journal of Hazardous Materials, 244-245, 726-735. doi:10.1016/j.jhazmat.2012.11.006 es_ES
dc.description.references El-Safty, S. A., Shenashen, M. A., Ismael, M., & Khairy, M. (2012). Encapsulation of proteins into tunable and giant mesocage alumina. Chemical Communications, 48(53), 6708. doi:10.1039/c2cc30725a es_ES
dc.description.references El-Safty, S. A., Shenashen, M. A., & Shahat, A. (2013). Tailor-Made Micro-Object Optical Sensor Based on Mesoporous Pellets for Visual Monitoring and Removal of Toxic Metal Ions from Aqueous Media. Small, 9(13), 2288-2296. doi:10.1002/smll.201202407 es_ES
dc.description.references El-Safty, S. A., & Shenashen, M. A. (2013). Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors and Actuators B: Chemical, 183, 58-70. doi:10.1016/j.snb.2013.03.041 es_ES
dc.description.references El-Sewify, I. M., Shenashen, M. A., Shahat, A., Yamaguchi, H., Selim, M. M., Khalil, M. M. H., & El-Safty, S. A. (2018). Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 198, 438-448. doi:10.1016/j.jlumin.2018.02.028 es_ES
dc.description.references Emran, M. Y., El-Safty, S. A., Shenashen, M. A., & Minowa, T. (2019). A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical, 284, 456-467. doi:10.1016/j.snb.2018.12.142 es_ES
dc.description.references Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 es_ES
dc.description.references Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b es_ES
dc.description.references Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049 es_ES
dc.description.references González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565 es_ES
dc.description.references SHIMIZU, M. (2010). Interaction between Food Substances and the Intestinal Epithelium. Bioscience, Biotechnology, and Biochemistry, 74(2), 232-241. doi:10.1271/bbb.90730 es_ES
dc.description.references Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 es_ES
dc.description.references Han, N., Wang, Y., Bai, J., Liu, J., Wang, Y., Gao, Y., … Wang, S. (2016). Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous and Mesoporous Materials, 219, 209-218. doi:10.1016/j.micromeso.2015.08.006 es_ES
dc.description.references Zhang, J., Desai, D., & Rosenholm, J. M. (2013). Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers. Advanced Functional Materials, 24(16), 2352-2360. doi:10.1002/adfm.201302995 es_ES
dc.description.references Van Schooneveld, M. M., Vucic, E., Koole, R., Zhou, Y., Stocks, J., Cormode, D. P., … Mulder, W. J. M. (2008). Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality Investigation. Nano Letters, 8(8), 2517-2525. doi:10.1021/nl801596a es_ES
dc.description.references See Supporting information for details. es_ES
dc.description.references Said, H. M. (2011). Intestinal absorption of water-soluble vitamins in health and disease. Biochemical Journal, 437(3), 357-372. doi:10.1042/bj20110326 es_ES
dc.description.references Thakur, K., Tomar, S. K., Singh, A. K., Mandal, S., & Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57(17), 3650-3660. doi:10.1080/10408398.2016.1145104 es_ES
dc.description.references LANE, M., & ALFREY, C. P. (1965). The Anemia of Human Riboflavin Deficiency. Blood, 25(4), 432-442. doi:10.1182/blood.v25.4.432.432 es_ES
dc.description.references Bosch, A. M., Abeling, N. G. G. M., IJlst, L., Knoester, H., van der Pol, W. L., Stroomer, A. E. M., … Waterham, H. R. (2010). Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. Journal of Inherited Metabolic Disease, 34(1), 159-164. doi:10.1007/s10545-010-9242-z es_ES
dc.description.references Said, H. M., Ortiz, A., Moyer, M. P., & Yanagawa, N. (2000). Riboflavin uptake by human-derived colonic epithelial NCM460 cells. American Journal of Physiology-Cell Physiology, 278(2), C270-C276. doi:10.1152/ajpcell.2000.278.2.c270 es_ES
dc.description.references Nakano, E., Mushtaq, S., Heath, P. R., Lee, E.-S., Bury, J. P., Riley, S. A., … Corfe, B. M. (2010). Riboflavin Depletion Impairs Cell Proliferation in Adult Human Duodenum: Identification of Potential Effectors. Digestive Diseases and Sciences, 56(4), 1007-1019. doi:10.1007/s10620-010-1374-3 es_ES
dc.description.references Li, S.-S., Xu, Y.-W., Wu, J.-Y., Tan, H.-Z., Wu, Z.-Y., Xue, Y.-J., … Xu, L.-Y. (2016). Plasma Riboflavin Level is Associated with Risk, Relapse, and Survival of Esophageal Squamous Cell Carcinoma. Nutrition and Cancer, 69(1), 21-28. doi:10.1080/01635581.2017.1247890 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem