Mostrar el registro sencillo del ítem
dc.contributor.author | R. Rubio, Francisco | es_ES |
dc.contributor.author | Navas, Sergio J. | es_ES |
dc.contributor.author | Ollero, Pedro | es_ES |
dc.contributor.author | Lemos, Joao M. | es_ES |
dc.contributor.author | Ortega, Manuel G. | es_ES |
dc.coverage.spatial | east=-6.0006831; north=37.4108639; name=Escuela Técnica Superior de Ingeniería de Sevilla Sevilla, Espanya | es_ES |
dc.date.accessioned | 2020-05-13T19:26:04Z | |
dc.date.available | 2020-05-13T19:26:04Z | |
dc.date.issued | 2018-06-22 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143091 | |
dc.description.abstract | [EN] This work describes the optimal control of a parabolic trough solar plant when the solar radiation is subject to variations due to the passage of clouds. The objective of the control strategies developed is to optimize the generated power, unlike other strategies that pursue the maintenance of the outlet oil temperature of the solar field. The solar plant model developed includes the solar field with all its loops, as well as the power generation system and the storage system. It also models the passage of clouds with dfferent sizes of coverage of the solar field. Dierent control strategies are developed to maximize the power generated and at the same time to try to produce that power as long as possible and with the smallest variations. | es_ES |
dc.description.abstract | [ES] En este trabajo se describe el control de una planta solar de colectores cilíndrico parabólicos cuando la radiación solar está sometida a variaciones debidas al paso de nubes. El objetivo de las estrategias de control desarrolladas es optimizar la potencia generada, a diferencia de otras estrategias que persiguen el mantenimiento de la temperatura de salida del campo solar. El modelo desarrollado de la planta solar incluye tanto el campo solar con todos sus lazos, como el sistema de generación de potencia y el sistema de almacenamiento. Así mismo se modela el paso de las nubes con diferentes tamaños de cobertura del campo solar. Se desarrollan diferentes estrategias de control para maximizar la potencia generada y al mismo tiempo intentar producir dicha potencia el máximo de tiempo posible y con las menores variaciones. | es_ES |
dc.description.sponsorship | Este trabajo ha sido soportado por los proyectos DPI2013-44135-R y DPI2015-70973-R del Ministerio Español de Ciencia e Innovación. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Process Control | es_ES |
dc.subject | Predictive control | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Solar energy | es_ES |
dc.subject | Control de procesos | es_ES |
dc.subject | Control predictivo | es_ES |
dc.subject | Optimización | es_ES |
dc.subject | Energía solar | es_ES |
dc.title | Control Óptimo Aplicado a Campos de Colectores Solares Distribuidos | es_ES |
dc.title.alternative | Optimal Control Applied to Distributed Solar Collector Fields | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2018.8944 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-44135-R/ES/ESTIMACION Y PREDICCION DISTRIBUIDA DE LA RADIACION PARA CONTROL DE CAMPOS SOLARES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-70973-R/ES/OPTIMIZACION DE LA PRODUCCION DE FRIO MEDIANTE SISTEMAS DE ALMACENAMIENTO DE ENERGIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | R. Rubio, F.; Navas, SJ.; Ollero, P.; Lemos, JM.; Ortega, MG. (2018). Control Óptimo Aplicado a Campos de Colectores Solares Distribuidos. Revista Iberoamericana de Automática e Informática industrial. 15(3):327-338. https://doi.org/10.4995/riai.2018.8944 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2018.8944 | es_ES |
dc.description.upvformatpinicio | 327 | es_ES |
dc.description.upvformatpfin | 338 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8944 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abutayeh, M., Alazzam, A. and El-Khasawneh, B. 2014. Balancing heat transfer fluid flow in solar fields. Solar Energy, 105, 381-389. https://doi.org/10.1016/j.solener.2014.03.025 | es_ES |
dc.description.references | Barão, M., Lemos, J. and Silva, R. 2002. Reduced complexity adaptive nonlinear control of a distributed collector solar field. Journal of Process Control, 12-1, 131-141. | es_ES |
dc.description.references | Camacho, E.F., Rubio, F.R. and Gutierrez, J.A. 1988. Modelling and Simulation of a Solar Power Plant with a Distributed Collectors System. Power Systems, Modelling and Control Applications. pp 11.3.1-11.3.5, Federation IBRA-BIRA, Bruselas. | es_ES |
dc.description.references | Camacho, E.F., Berenguel, M. and Rubio, F.R. 1997. Advanced control of solar plants. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-0981-5 | es_ES |
dc.description.references | Camacho, E.F., Rubio, F.R., Berenguel, M. and Valenzuela, L. 2007. A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Solar Energy, 81-10, 1240-1251. | es_ES |
dc.description.references | Camacho, E.F., Rubio, F.R., Berenguel, M. and Valenzuela, L. 2007. A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches. Solar Energy, 81-10, 1252-1272. | es_ES |
dc.description.references | Camacho, E.F., Berenguel, M., Rubio, F.R. and Martínez, D. 2012. Control of solar energy systems. Springer-Verlag, London. https://doi.org/10.1007/978-0-85729-916-1 | es_ES |
dc.description.references | Camacho, E.F. and Gallego, A. 2013. Optimal operation in solar trough plants :A case study. Solar Energy, 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029 | es_ES |
dc.description.references | Carmona, R., 1985. Análisis, modelado y control de un campo de colectores solares distribuidos con sistema de seguimiento en eje. Ph.D. Thesis. | es_ES |
dc.description.references | Cirre, C., Berenguel, M., Valenzuela, L. and Camacho, E.F. 2007. Feedback linearization control for a distributed solar collector field. Control Engineering Practice, 15-12, 1533-1544. | es_ES |
dc.description.references | Cirre, C., Berenguel, M., Valenzuela, L. and Klempous, R. 2009. Reference governor optimization and control of a distributed solar collector field. European Journal of Operational Research, 193, 709-717. https://doi.org/10.1016/j.ejor.2007.05.056 | es_ES |
dc.description.references | Colmenar-Santos, A., Munuera-Perez, F., Tawfik, M. and Castro-Gil, M. 2014.A simple method for studying the effect of scattering of the performance parameters of parabolic trough collectors on the control of a solar field. Solar Energy, 99, 215-230.G https://doi.org/10.1016/j.solener.2013.11.004 | es_ES |
dc.description.references | Gallego, A. and Camacho, E.F. 2012. Estimation of effective solar irradiation using an unscented kalman filter in a parabolic-trough field. Solar Energy,86-12, 3512-3518. | es_ES |
dc.description.references | García, S. 2012. Guía técnica de la energía solar termoeléctrica Fenercom, Capítulo 1. | es_ES |
dc.description.references | Lemos, J.M. 2006. Adaptive control of distributed collector solar fields. International journal of systems science, Vol. 37-8, 523-533. https://doi.org/10.1080/00207720600783686 | es_ES |
dc.description.references | Lemos, J.M., Neves-Silva, R. and Igreja, J.M., 2014. Adaptive control of solar energy collector systems. Springer-Verlag, London. https://doi.org/10.1007/978-3-319-06853-4 | es_ES |
dc.description.references | Lima, D., Normey-Rico, J. and Santos, T. 2016. Temperature control in a solar collector field using filtered dynamic matrix control. ISA Transactions, 62, 39-49. https://doi.org/10.1016/j.isatra.2015.09.016 | es_ES |
dc.description.references | Lippke, F. 1995. Simulation of the part-load behavior of a 30 MWe SEGS plant. Report No. SAND95-1293, SNL, Albuquerque, NM, USA. | es_ES |
dc.description.references | Manzolini, G., Giostri, A., Saccilotto, C., Silva, P. and Macchi, E. 2012. A numerical model for off-design performance prediction of parabolic trough based solar power plants. Journal of Solar Energy Engineering, Vol.134. https://doi.org/10.1115/1.4005105 | es_ES |
dc.description.references | Meaburn, A. and Hughes, F.M. 1993. Resonance Characteristics of a Distributed Solar Collector Fields. Solar Energy, 51, 3, 215-221. https://doi.org/10.1016/0038-092X(93)90099-A | es_ES |
dc.description.references | Montes, M., Abánades, A., Martínez-Val, J. and Valdés, M. 2009. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy, 83-12, 2165-2176. https://doi.org/10.1016/j.solener.2009.08.010 | es_ES |
dc.description.references | Navas, S.J., Rubio, F.R., Ollero, P. and Ortega, M.G. 2016. Modeling and simulation of parabolic trough solar fields with partial radiation. XV European Control Conference, 31-36. https://doi.org/10.1109/ECC.2016.7810259 | es_ES |
dc.description.references | Navas, S.J., Ollero, P. and Rubio, F.R. 2017. Optimum operating temperature of parabolic trough solar fields. Solar energy, 158, 295-302. https://doi.org/10.1016/j.solener.2017.09.022 | es_ES |
dc.description.references | Price, H., Lupfert, E., Kearney, D., Zarza, E., Cohen, G., Gee, R. and Mahoney, R. 2002. Advances in parabolic trough solar power technology. Solar Energy, 124-2, 109-125. | es_ES |
dc.description.references | Romera, J.A. y Santos, M. 2017. ParaTrough v1.0: Librería en Modelica paraSimulación de Plantas Termosolares. Revista Iberoamericana de Automática e Informática Industrial (RIAI), Vol 14, 412-423. https://doi.org/10.1016/j.riai.2017.06.005 | es_ES |
dc.description.references | Rubio, F.R., Camacho, E.F. and Berenguel, M. 2006. Control de campos de colectores solares. Revista Iberoamericana de Automática e Informática Industrial (RIAI), 3-4, 26-45. | es_ES |
dc.description.references | Shinskey, F. 1978. Energy conservation through control. Academic Press. | es_ES |
dc.description.references | Smith, R. 2005. Chemical process design and integration. Wiley. | es_ES |
dc.description.references | Stodola, A. 1945. Steam and gas turbines. Vol. 1, Peter Smith, New York. | es_ES |