- -

Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances

Mostrar el registro completo del ítem

Plesa, IM.; Al Hassan, M.; González-Orenga, S.; Sestras, A.; Vicente, O.; Prohens Tomás, J.; Boscaiu, M.... (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests. 10(6):1-22. https://doi.org/10.3390/f10060511

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143122

Ficheros en el ítem

Metadatos del ítem

Título: Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances
Autor: Plesa, Ioana M. Al Hassan, Mohamad González-Orenga, Sara Sestras, Adriana Vicente, Oscar Prohens Tomás, Jaime Boscaiu, Monica Sestras, Radu
Entidad UPV: Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] European larch (Larix decidua Mill.) has been reported either as more tolerant or as more sensitive to drought than conifers with perennial leaves. Previous studies have revealed that Carpathian populations of European ...[+]
Palabras clave: Antioxidants , Larch provenances , Photosynthetic pigments , Potassium , Proline
Derechos de uso: Reconocimiento (by)
Fuente:
Forests. (eissn: 1999-4907 )
DOI: 10.3390/f10060511
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/f10060511
Tipo: Artículo

References

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001

DALE, V. H., JOYCE, L. A., MCNULTY, S., NEILSON, R. P., AYRES, M. P., FLANNIGAN, M. D., … MICHAEL WOTTON, B. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723. doi:10.1641/0006-3568(2001)051[0723:ccafd]2.0.co;2

Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871-887. doi:10.1111/nph.14255 [+]
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001

DALE, V. H., JOYCE, L. A., MCNULTY, S., NEILSON, R. P., AYRES, M. P., FLANNIGAN, M. D., … MICHAEL WOTTON, B. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723. doi:10.1641/0006-3568(2001)051[0723:ccafd]2.0.co;2

Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871-887. doi:10.1111/nph.14255

Eilmann, B., de Vries, S. M. G., den Ouden, J., Mohren, G. M. J., Sauren, P., & Sass-Klaassen, U. (2013). Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. Forest Ecology and Management, 302, 133-143. doi:10.1016/j.foreco.2013.03.031

Gao, R., Shi, X., & Wang, J. R. (2017). Comparative studies of the response of larch and birch seedlings from two origins to water deficit. New Zealand Journal of Forestry Science, 47(1). doi:10.1186/s40490-017-0095-1

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., … Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. doi:10.1016/j.foreco.2009.09.023

Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203-207. doi:10.1038/nclimate1687

SALA, A., & HOCH, G. (2009). Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell & Environment, 32(1), 22-30. doi:10.1111/j.1365-3040.2008.01896.x

Milad, M., Schaich, H., Bürgi, M., & Konold, W. (2011). Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. Forest Ecology and Management, 261(4), 829-843. doi:10.1016/j.foreco.2010.10.038

Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G.-J., Schall, P., … Rock, J. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473-482. doi:10.1080/02827580903418224

Xiang, W., Lei, X., & Zhang, X. (2016). Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. Forest Ecology and Management, 382, 100-109. doi:10.1016/j.foreco.2016.09.050

Sánchez-Gómez, D., Robson, T. M., Gascó, A., Gil-Pelegrín, E., & Aranda, I. (2013). Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environmental and Experimental Botany, 87, 110-119. doi:10.1016/j.envexpbot.2012.09.011

Bussotti, F., Pollastrini, M., Holland, V., & Brüggemann, W. (2015). Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany, 111, 91-113. doi:10.1016/j.envexpbot.2014.11.006

GRAMAZIO, P., PLESA, I. M., TRUTA, A. M., SESTRAS, A. F., VILANOVA, S., PLAZAS, M., … SESTRAS, R. E. (2018). Highly informative SSR genotyping reveals large genetic diversity and limited differentiation in European larch (Larixdecidua) populations from Romania. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 42(3), 165-175. doi:10.3906/tar-1801-41

Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473

Murray, F. W. (1967). On the Computation of Saturation Vapor Pressure. Journal of Applied Meteorology, 6(1), 203-204. doi:10.1175/1520-0450(1967)006<0203:otcosv>2.0.co;2

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., … Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421-426. doi:10.1038/s41558-018-0138-5

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030

Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J., … Konôpka, B. (2014). Climate change increases the drought risk in Central European forests: What are the options for adaptation? Forestry Journal, 60(1), 5-18. doi:10.2478/forj-2014-0001

Badalotti, A., Anfodillo, T., & Grace, J. (2000). Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species. Annals of Forest Science, 57(7), 623-633. doi:10.1051/forest:2000146

Eilmann, B., & Rigling, A. (2012). Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiology, 32(2), 178-187. doi:10.1093/treephys/tps004

Schuster, R., & Oberhuber, W. (2012). Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees, 27(1), 61-69. doi:10.1007/s00468-012-0768-6

PLESA, I., AL HASSAN, M., SESTRAS, A. F., VICENTE, O., BOSCAIU, M., & SESTRAS, R. E. (2018). Biochemical Markers of Salt Stress in European Larch (Larix decidua). Notulae Scientia Biologicae, 10(3), 430-438. doi:10.15835/nsb10310322

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1

Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Arteaga, S., Al Hassan, M., Chaminda Bandara, W., Yabor, L., Llinares, J., Boscaiu, M., & Vicente, O. (2018). Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture, 8(12), 201. doi:10.3390/agriculture8120201

Cicevan, R., Al Hassan, M., Sestras, A. F., Prohens, J., Vicente, O., Sestras, R. E., & Boscaiu, M. (2016). Screening for drought tolerance in cultivars of the ornamental genusTagetes(Asteraceae). PeerJ, 4, e2133. doi:10.7717/peerj.2133

Plesa, I., González-Orenga, S., Al Hassan, M., Sestras, A., Vicente, O., Prohens, J., … Boscaiu, M. (2018). Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. Forests, 9(6), 320. doi:10.3390/f9060320

Toldi, O., Tuba, Z., & Scott, P. (2009). Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Science, 176(2), 187-199. doi:10.1016/j.plantsci.2008.10.002

Corcuera, L., Gil-Pelegrin, E., & Notivol, E. (2011). Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. Trees, 26(3), 799-808. doi:10.1007/s00468-011-0651-x

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419

Junker, L. V., & Ensminger, I. (2016). Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescingAcer saccharumleaves. Tree Physiology, 36(6), 694-711. doi:10.1093/treephys/tpv148

FLEXAS, J. (2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027

Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203. doi:10.1071/fp03236

Alonso, R., Elvira, S., Castillo, F. J., & Gimeno, B. S. (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment, 24(9), 905-916. doi:10.1046/j.0016-8025.2001.00738.x

Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115(1), 9-16. doi:10.1016/s0269-7491(01)00097-5

Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202

Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116

Guo, J., Yang, Y., Wang, G., Yang, L., & Sun, X. (2010). Ecophysiological responses ofAbies fabriseedlings to drought stress and nitrogen supply. Physiologia Plantarum. doi:10.1111/j.1399-3054.2010.01370.x

Gleeson, D., Lelu-Walter, M.-A., & Parkinson, M. (2004). Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaeaDengler), sitka spruce (Picea sitchensis(Bong.) Carr.) and oak (Quercus roburL.) subjected to cold and salt stress. Annals of Forest Science, 61(2), 125-128. doi:10.1051/forest:2004003

Hartmann, H., & Trumbore, S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist, 211(2), 386-403. doi:10.1111/nph.13955

Clancy, K. M., Wagner, M. R., & Reich, P. B. (1995). Ecophysiology and Insect Herbivory. Ecophysiology of Coniferous Forests, 125-180. doi:10.1016/b978-0-08-092593-6.50011-6

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003

Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709-711. doi:10.4161/psb.6.5.15069

Granda, V., Delatorre, C., Cuesta, C., Centeno, M. L., Fernandez, B., Rodriguez, A., & Feito, I. (2014). Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. Tree Physiology, 34(7), 778-786. doi:10.1093/treephys/tpu052

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem