- -

Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes

Mostrar el registro completo del ítem

Guillen Salazar, MI.; Platas, J.; Perez Del Caz, M.; Mirabet, V.; Alcaraz Tormo, MJ. (2018). Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.00661

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143129

Ficheros en el ítem

Metadatos del ítem

Título: Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes
Autor: Guillen Salazar, Mª Isabel Platas, Julia Perez del Caz, M.D. Mirabet, Vicente Alcaraz Tormo, Mª Jose
Fecha difusión:
Resumen:
[EN] The inflammatory process is an essential phenomenon in the induction of immune responses. Monocytes are key effector cells during the inflammatory process. A wide range of evidence indicates that mesenchymal stem cells ...[+]
Palabras clave: Mesenchymal stem cells , Inflammation , Monocytes/macrophages , Oxidative stress , Inflammatory mediators
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Physiology. (issn: 1664-042X )
DOI: 10.3389/fphys.2018.00661
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphys.2018.00661
Código del Proyecto:
info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH20%2F11/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F071/ES/Estrategias de protección frente a procesos inflamatorios y degenerativos/
Agradecimientos:
This work has been funded by grants SAF2017-85806-R (MINECO and FEDER), PROMETEOII/2014/071 (Generalitat Valenciana) and PRCEU-UCH20/11.
Tipo: Artículo

References

Akahoshi, T., Wada, C., Endo, H., Hirota, K., Hosaka, S., Takagishi, K., … Matsushima, K. (1993). Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis & Rheumatism, 36(6), 762-771. doi:10.1002/art.1780360605

Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4(7), 499-511. doi:10.1038/nri1391

Bardelli, C., Amoruso, A., Federici Canova, D., Fresu, L., Balbo, P., Neri, T., … Brunelleschi, S. (2012). Autocrine activation of human monocyte/macrophages by monocyte-derived microparticles and modulation by PPARγ ligands. British Journal of Pharmacology, 165(3), 716-728. doi:10.1111/j.1476-5381.2011.01593.x [+]
Akahoshi, T., Wada, C., Endo, H., Hirota, K., Hosaka, S., Takagishi, K., … Matsushima, K. (1993). Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis & Rheumatism, 36(6), 762-771. doi:10.1002/art.1780360605

Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4(7), 499-511. doi:10.1038/nri1391

Bardelli, C., Amoruso, A., Federici Canova, D., Fresu, L., Balbo, P., Neri, T., … Brunelleschi, S. (2012). Autocrine activation of human monocyte/macrophages by monocyte-derived microparticles and modulation by PPARγ ligands. British Journal of Pharmacology, 165(3), 716-728. doi:10.1111/j.1476-5381.2011.01593.x

Ben-Porath, I., & Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. The International Journal of Biochemistry & Cell Biology, 37(5), 961-976. doi:10.1016/j.biocel.2004.10.013

Bertani, F. R., Mozetic, P., Fioramonti, M., Iuliani, M., Ribelli, G., Pantano, F., … Rainer, A. (2017). Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Scientific Reports, 7(1). doi:10.1038/s41598-017-08121-8

Bronkhorst, I. H. G., Jehs, T. M. L., Dijkgraaf, E. M., Luyten, G. P. M., van der Velden, P. A., van der Burg, S. H., & Jager, M. J. (2014). Effect of Hypoxic Stress on Migration and Characteristics of Monocytes in Uveal Melanoma. JAMA Ophthalmology, 132(5), 614. doi:10.1001/jamaophthalmol.2014.43

Carceller, M. C., Guillén, M. I., Ferrándiz, M. L., & Alcaraz, M. J. (2015). Paracrine in vivo inhibitory effects of adipose tissue–derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy, 17(9), 1230-1239. doi:10.1016/j.jcyt.2015.06.001

Cathcart, M. K. (2004). Regulation of Superoxide Anion Production by NADPH Oxidase in Monocytes/Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(1), 23-28. doi:10.1161/01.atv.0000097769.47306.12

Corradin, S. B., Buchmüller-Rouiller, Y., & Mauël, J. (1991). Phagocytosis enhances murine macrophage activation by interferon-γ and tumor necrosis factor-α. European Journal of Immunology, 21(10), 2553-2558. doi:10.1002/eji.1830211036

Correia-Melo, C., Hewitt, G., & Passos, J. F. (2014). Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longevity & Healthspan, 3(1), 1. doi:10.1186/2046-2395-3-1

Young, L. M., Kheifets, J. B., Ballaron, S. J., & Young, J. M. (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and Actions, 26(3-4), 335-341. doi:10.1007/bf01967298

Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363

Frieri, M. (1998). Nitric Oxide in Allergic Rhinitis and Asthma. Allergy and Asthma Proceedings, 19(6), 349-351. doi:10.2500/108854198778612708

GREAVES, D., & CHANNON, K. (2002). Inflammation and immune responses in atherosclerosis. Trends in Immunology, 23(11), 535-541. doi:10.1016/s1471-4906(02)02331-1

Haringman, J. J. (2005). Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 64(6), 834-838. doi:10.1136/ard.2004.029751

Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144-150. doi:10.1016/s1471-4906(01)02154-8

Hayashida, K., Nanki, T., Girschick, H., Yavuz, S., Ochi, T., & Lipsky, P. E. (2001). Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Research & Therapy, 3(2). doi:10.1186/ar149

Martel-Pelletier, J., Pelletier, J.-P., & Fahmi, H. (2003). Cyclooxygenase-2 and prostaglandins in articular tissues. Seminars in Arthritis and Rheumatism, 33(3), 155-167. doi:10.1016/s0049-0172(03)00134-3

Matata, B. M., & Galiñanes, M. (2001). Peroxynitrite Is an Essential Component of Cytokines Production Mechanism in Human Monocytes through Modulation of Nuclear Factor-κB DNA Binding Activity. Journal of Biological Chemistry, 277(3), 2330-2335. doi:10.1074/jbc.m106393200

Mattar, P., & Bieback, K. (2015). Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Frontiers in Immunology, 6. doi:10.3389/fimmu.2015.00560

Merino, A., Buendia, P., Martin-Malo, A., Aljama, P., Ramirez, R., & Carracedo, J. (2010). Senescent CD14+CD16+Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity. The Journal of Immunology, 186(3), 1809-1815. doi:10.4049/jimmunol.1001866

Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M., & Currie, M. G. (1993). A Fluorometric Assay for the Measurement of Nitrite in Biological Samples. Analytical Biochemistry, 214(1), 11-16. doi:10.1006/abio.1993.1449

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149

MORONEY, M.-A., ALCARAZ, M. J., FORDER, R. A., CAREY, F., & HOULT, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787-792. doi:10.1111/j.2042-7158.1988.tb05173.x

Mukaida, N. (1998). Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine & Growth Factor Reviews, 9(1), 9-23. doi:10.1016/s1359-6101(97)00022-1

Mytych, J., Romerowicz-Misielak, M., & Koziorowski, M. (2017). Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicology in Vitro, 42, 1-9. doi:10.1016/j.tiv.2017.03.009

Ofek, I., Goldhar, J., Keisari, Y., & Sharon, N. (1995). Nonopsonic Phagocytosis of Microorganisms. Annual Review of Microbiology, 49(1), 239-276. doi:10.1146/annurev.mi.49.100195.001323

Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric Oxide and Peroxynitrite in Health and Disease. Physiological Reviews, 87(1), 315-424. doi:10.1152/physrev.00029.2006

Parihar, A., Eubank, T. D., & Doseff, A. I. (2010). Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death. Journal of Innate Immunity, 2(3), 204-215. doi:10.1159/000296507

Platas, J., Guillén, M. I., del Caz, M. D. P., Gomar, F., Mirabet, V., & Alcaraz, M. J. (2013). Conditioned Media from Adipose-Tissue-Derived Mesenchymal Stem Cells Downregulate Degradative Mediators Induced by Interleukin-1βin Osteoarthritic Chondrocytes. Mediators of Inflammation, 2013, 1-10. doi:10.1155/2013/357014

Platas, J., Guillén, M. I., Pérez del Caz, M. D., Gomar, F., Castejón, M. A., Mirabet, V., & Alcaraz, M. J. (2016). Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging, 8(8), 1703-1717. doi:10.18632/aging.101007

Prockop, D. J., & Youn Oh, J. (2012). Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 20(1), 14-20. doi:10.1038/mt.2011.211

Rayner, B. S., Love, D. T., & Hawkins, C. L. (2014). Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radical Biology and Medicine, 71, 240-255. doi:10.1016/j.freeradbiomed.2014.03.004

Sheng, H., Wang, Y., Jin, Y., Zhang, Q., Zhang, Y., Wang, L., … Li, N. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846-857. doi:10.1038/cr.2008.80

Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762-774. doi:10.1038/nri3070

Shute, J. (2011). Glycosaminoglycan and Chemokine/Growth Factor Interactions. Handbook of Experimental Pharmacology, 307-324. doi:10.1007/978-3-642-23056-1_13

Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004

Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598

Zheng, G., Ge, M., Qiu, G., Shu, Q., & Xu, J. (2015). Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 1-11. doi:10.1155/2015/989473

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem