- -

Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guillen Salazar, Mª Isabel es_ES
dc.contributor.author Platas, Julia es_ES
dc.contributor.author Perez del Caz, M.D. es_ES
dc.contributor.author Mirabet, Vicente es_ES
dc.contributor.author Alcaraz Tormo, Mª Jose es_ES
dc.date.accessioned 2020-05-14T03:04:36Z
dc.date.available 2020-05-14T03:04:36Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/143129
dc.description.abstract [EN] The inflammatory process is an essential phenomenon in the induction of immune responses. Monocytes are key effector cells during the inflammatory process. A wide range of evidence indicates that mesenchymal stem cells from adipose tissue (ASC) are endowed with immunomodulatory capacity. However, the interaction between ASC and monocytes in the innate immune response is not well understood. The aim of this work was to investigate the possible paracrine anti-inflammatory effects of ASC in human monocytes. Monocytes were isolated from buffy coats and ASC from fat of non-obese patients. Conditioned medium (CM) from ASC in primary culture was used. We have assessed the effects of CM on the production of inflammatory mediators, degranulation, migration, phagocytic activity, senescence, oxidative stress, mitochondrial membrane potential and macrophage polarization. We have shown that ASC exert paracrine anti-inflammatory actions on human monocytes. CM significantly reduced the production of TNF alpha, NO and PGE2 and the activation of NF-kappa B. In addition, we observed a significant reduction of degranulation, phagocytic activity and their migratory ability in the presence of the chemokine CCL2. The senescence process and the production of oxidative stress and mitochondrial dysfunction were inhibited by CM which also reduced the production of TNF alpha by M1 macrophages while enhanced TGF beta 1 and IL-10 release by M2 macrophages. This study have demonstrated relevant interactions of ASC with human monocytes and macrophages which are key players of the innate immune response. Our results indicate that ASC secretome mediates the anti-inflammatory actions of these cells. This paracrine mechanism would limit the duration and amplitude of the inflammatory response. es_ES
dc.description.sponsorship This work has been funded by grants SAF2017-85806-R (MINECO and FEDER), PROMETEOII/2014/071 (Generalitat Valenciana) and PRCEU-UCH20/11. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Inflammation es_ES
dc.subject Monocytes/macrophages es_ES
dc.subject Oxidative stress es_ES
dc.subject Inflammatory mediators es_ES
dc.title Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2018.00661 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH20%2F11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F071/ES/Estrategias de protección frente a procesos inflamatorios y degenerativos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Guillen Salazar, MI.; Platas, J.; Perez Del Caz, M.; Mirabet, V.; Alcaraz Tormo, MJ. (2018). Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.00661 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2018.00661 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 29904354 es_ES
dc.relation.pasarela S\378196 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad CEU Cardenal Herrera es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Akahoshi, T., Wada, C., Endo, H., Hirota, K., Hosaka, S., Takagishi, K., … Matsushima, K. (1993). Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis & Rheumatism, 36(6), 762-771. doi:10.1002/art.1780360605 es_ES
dc.description.references Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4(7), 499-511. doi:10.1038/nri1391 es_ES
dc.description.references Bardelli, C., Amoruso, A., Federici Canova, D., Fresu, L., Balbo, P., Neri, T., … Brunelleschi, S. (2012). Autocrine activation of human monocyte/macrophages by monocyte-derived microparticles and modulation by PPARγ ligands. British Journal of Pharmacology, 165(3), 716-728. doi:10.1111/j.1476-5381.2011.01593.x es_ES
dc.description.references Ben-Porath, I., & Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. The International Journal of Biochemistry & Cell Biology, 37(5), 961-976. doi:10.1016/j.biocel.2004.10.013 es_ES
dc.description.references Bertani, F. R., Mozetic, P., Fioramonti, M., Iuliani, M., Ribelli, G., Pantano, F., … Rainer, A. (2017). Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Scientific Reports, 7(1). doi:10.1038/s41598-017-08121-8 es_ES
dc.description.references Bronkhorst, I. H. G., Jehs, T. M. L., Dijkgraaf, E. M., Luyten, G. P. M., van der Velden, P. A., van der Burg, S. H., & Jager, M. J. (2014). Effect of Hypoxic Stress on Migration and Characteristics of Monocytes in Uveal Melanoma. JAMA Ophthalmology, 132(5), 614. doi:10.1001/jamaophthalmol.2014.43 es_ES
dc.description.references Carceller, M. C., Guillén, M. I., Ferrándiz, M. L., & Alcaraz, M. J. (2015). Paracrine in vivo inhibitory effects of adipose tissue–derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy, 17(9), 1230-1239. doi:10.1016/j.jcyt.2015.06.001 es_ES
dc.description.references Cathcart, M. K. (2004). Regulation of Superoxide Anion Production by NADPH Oxidase in Monocytes/Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(1), 23-28. doi:10.1161/01.atv.0000097769.47306.12 es_ES
dc.description.references Corradin, S. B., Buchmüller-Rouiller, Y., & Mauël, J. (1991). Phagocytosis enhances murine macrophage activation by interferon-γ and tumor necrosis factor-α. European Journal of Immunology, 21(10), 2553-2558. doi:10.1002/eji.1830211036 es_ES
dc.description.references Correia-Melo, C., Hewitt, G., & Passos, J. F. (2014). Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longevity & Healthspan, 3(1), 1. doi:10.1186/2046-2395-3-1 es_ES
dc.description.references Young, L. M., Kheifets, J. B., Ballaron, S. J., & Young, J. M. (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and Actions, 26(3-4), 335-341. doi:10.1007/bf01967298 es_ES
dc.description.references Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 es_ES
dc.description.references Frieri, M. (1998). Nitric Oxide in Allergic Rhinitis and Asthma. Allergy and Asthma Proceedings, 19(6), 349-351. doi:10.2500/108854198778612708 es_ES
dc.description.references GREAVES, D., & CHANNON, K. (2002). Inflammation and immune responses in atherosclerosis. Trends in Immunology, 23(11), 535-541. doi:10.1016/s1471-4906(02)02331-1 es_ES
dc.description.references Haringman, J. J. (2005). Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 64(6), 834-838. doi:10.1136/ard.2004.029751 es_ES
dc.description.references Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144-150. doi:10.1016/s1471-4906(01)02154-8 es_ES
dc.description.references Hayashida, K., Nanki, T., Girschick, H., Yavuz, S., Ochi, T., & Lipsky, P. E. (2001). Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Research & Therapy, 3(2). doi:10.1186/ar149 es_ES
dc.description.references Martel-Pelletier, J., Pelletier, J.-P., & Fahmi, H. (2003). Cyclooxygenase-2 and prostaglandins in articular tissues. Seminars in Arthritis and Rheumatism, 33(3), 155-167. doi:10.1016/s0049-0172(03)00134-3 es_ES
dc.description.references Matata, B. M., & Galiñanes, M. (2001). Peroxynitrite Is an Essential Component of Cytokines Production Mechanism in Human Monocytes through Modulation of Nuclear Factor-κB DNA Binding Activity. Journal of Biological Chemistry, 277(3), 2330-2335. doi:10.1074/jbc.m106393200 es_ES
dc.description.references Mattar, P., & Bieback, K. (2015). Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Frontiers in Immunology, 6. doi:10.3389/fimmu.2015.00560 es_ES
dc.description.references Merino, A., Buendia, P., Martin-Malo, A., Aljama, P., Ramirez, R., & Carracedo, J. (2010). Senescent CD14+CD16+Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity. The Journal of Immunology, 186(3), 1809-1815. doi:10.4049/jimmunol.1001866 es_ES
dc.description.references Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M., & Currie, M. G. (1993). A Fluorometric Assay for the Measurement of Nitrite in Biological Samples. Analytical Biochemistry, 214(1), 11-16. doi:10.1006/abio.1993.1449 es_ES
dc.description.references Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149 es_ES
dc.description.references MORONEY, M.-A., ALCARAZ, M. J., FORDER, R. A., CAREY, F., & HOULT, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787-792. doi:10.1111/j.2042-7158.1988.tb05173.x es_ES
dc.description.references Mukaida, N. (1998). Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine & Growth Factor Reviews, 9(1), 9-23. doi:10.1016/s1359-6101(97)00022-1 es_ES
dc.description.references Mytych, J., Romerowicz-Misielak, M., & Koziorowski, M. (2017). Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicology in Vitro, 42, 1-9. doi:10.1016/j.tiv.2017.03.009 es_ES
dc.description.references Ofek, I., Goldhar, J., Keisari, Y., & Sharon, N. (1995). Nonopsonic Phagocytosis of Microorganisms. Annual Review of Microbiology, 49(1), 239-276. doi:10.1146/annurev.mi.49.100195.001323 es_ES
dc.description.references Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric Oxide and Peroxynitrite in Health and Disease. Physiological Reviews, 87(1), 315-424. doi:10.1152/physrev.00029.2006 es_ES
dc.description.references Parihar, A., Eubank, T. D., & Doseff, A. I. (2010). Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death. Journal of Innate Immunity, 2(3), 204-215. doi:10.1159/000296507 es_ES
dc.description.references Platas, J., Guillén, M. I., del Caz, M. D. P., Gomar, F., Mirabet, V., & Alcaraz, M. J. (2013). Conditioned Media from Adipose-Tissue-Derived Mesenchymal Stem Cells Downregulate Degradative Mediators Induced by Interleukin-1βin Osteoarthritic Chondrocytes. Mediators of Inflammation, 2013, 1-10. doi:10.1155/2013/357014 es_ES
dc.description.references Platas, J., Guillén, M. I., Pérez del Caz, M. D., Gomar, F., Castejón, M. A., Mirabet, V., & Alcaraz, M. J. (2016). Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging, 8(8), 1703-1717. doi:10.18632/aging.101007 es_ES
dc.description.references Prockop, D. J., & Youn Oh, J. (2012). Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 20(1), 14-20. doi:10.1038/mt.2011.211 es_ES
dc.description.references Rayner, B. S., Love, D. T., & Hawkins, C. L. (2014). Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radical Biology and Medicine, 71, 240-255. doi:10.1016/j.freeradbiomed.2014.03.004 es_ES
dc.description.references Sheng, H., Wang, Y., Jin, Y., Zhang, Q., Zhang, Y., Wang, L., … Li, N. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846-857. doi:10.1038/cr.2008.80 es_ES
dc.description.references Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762-774. doi:10.1038/nri3070 es_ES
dc.description.references Shute, J. (2011). Glycosaminoglycan and Chemokine/Growth Factor Interactions. Handbook of Experimental Pharmacology, 307-324. doi:10.1007/978-3-642-23056-1_13 es_ES
dc.description.references Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004 es_ES
dc.description.references Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598 es_ES
dc.description.references Zheng, G., Ge, M., Qiu, G., Shu, Q., & Xu, J. (2015). Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 1-11. doi:10.1155/2015/989473 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem