Mostrar el registro sencillo del ítem
dc.contributor.author | Guillen Salazar, Mª Isabel | es_ES |
dc.contributor.author | Platas, Julia | es_ES |
dc.contributor.author | Perez del Caz, M.D. | es_ES |
dc.contributor.author | Mirabet, Vicente | es_ES |
dc.contributor.author | Alcaraz Tormo, Mª Jose | es_ES |
dc.date.accessioned | 2020-05-14T03:04:36Z | |
dc.date.available | 2020-05-14T03:04:36Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143129 | |
dc.description.abstract | [EN] The inflammatory process is an essential phenomenon in the induction of immune responses. Monocytes are key effector cells during the inflammatory process. A wide range of evidence indicates that mesenchymal stem cells from adipose tissue (ASC) are endowed with immunomodulatory capacity. However, the interaction between ASC and monocytes in the innate immune response is not well understood. The aim of this work was to investigate the possible paracrine anti-inflammatory effects of ASC in human monocytes. Monocytes were isolated from buffy coats and ASC from fat of non-obese patients. Conditioned medium (CM) from ASC in primary culture was used. We have assessed the effects of CM on the production of inflammatory mediators, degranulation, migration, phagocytic activity, senescence, oxidative stress, mitochondrial membrane potential and macrophage polarization. We have shown that ASC exert paracrine anti-inflammatory actions on human monocytes. CM significantly reduced the production of TNF alpha, NO and PGE2 and the activation of NF-kappa B. In addition, we observed a significant reduction of degranulation, phagocytic activity and their migratory ability in the presence of the chemokine CCL2. The senescence process and the production of oxidative stress and mitochondrial dysfunction were inhibited by CM which also reduced the production of TNF alpha by M1 macrophages while enhanced TGF beta 1 and IL-10 release by M2 macrophages. This study have demonstrated relevant interactions of ASC with human monocytes and macrophages which are key players of the innate immune response. Our results indicate that ASC secretome mediates the anti-inflammatory actions of these cells. This paracrine mechanism would limit the duration and amplitude of the inflammatory response. | es_ES |
dc.description.sponsorship | This work has been funded by grants SAF2017-85806-R (MINECO and FEDER), PROMETEOII/2014/071 (Generalitat Valenciana) and PRCEU-UCH20/11. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mesenchymal stem cells | es_ES |
dc.subject | Inflammation | es_ES |
dc.subject | Monocytes/macrophages | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Inflammatory mediators | es_ES |
dc.title | Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2018.00661 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH20%2F11/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F071/ES/Estrategias de protección frente a procesos inflamatorios y degenerativos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Guillen Salazar, MI.; Platas, J.; Perez Del Caz, M.; Mirabet, V.; Alcaraz Tormo, MJ. (2018). Paracrine Anti-inflammatory Effects of Adipose Tissue-Derived Mesenchymal Stem Cells in Human Monocytes. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.00661 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2018.00661 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.pmid | 29904354 | es_ES |
dc.relation.pasarela | S\378196 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universidad CEU Cardenal Herrera | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Akahoshi, T., Wada, C., Endo, H., Hirota, K., Hosaka, S., Takagishi, K., … Matsushima, K. (1993). Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis & Rheumatism, 36(6), 762-771. doi:10.1002/art.1780360605 | es_ES |
dc.description.references | Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4(7), 499-511. doi:10.1038/nri1391 | es_ES |
dc.description.references | Bardelli, C., Amoruso, A., Federici Canova, D., Fresu, L., Balbo, P., Neri, T., … Brunelleschi, S. (2012). Autocrine activation of human monocyte/macrophages by monocyte-derived microparticles and modulation by PPARγ ligands. British Journal of Pharmacology, 165(3), 716-728. doi:10.1111/j.1476-5381.2011.01593.x | es_ES |
dc.description.references | Ben-Porath, I., & Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. The International Journal of Biochemistry & Cell Biology, 37(5), 961-976. doi:10.1016/j.biocel.2004.10.013 | es_ES |
dc.description.references | Bertani, F. R., Mozetic, P., Fioramonti, M., Iuliani, M., Ribelli, G., Pantano, F., … Rainer, A. (2017). Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Scientific Reports, 7(1). doi:10.1038/s41598-017-08121-8 | es_ES |
dc.description.references | Bronkhorst, I. H. G., Jehs, T. M. L., Dijkgraaf, E. M., Luyten, G. P. M., van der Velden, P. A., van der Burg, S. H., & Jager, M. J. (2014). Effect of Hypoxic Stress on Migration and Characteristics of Monocytes in Uveal Melanoma. JAMA Ophthalmology, 132(5), 614. doi:10.1001/jamaophthalmol.2014.43 | es_ES |
dc.description.references | Carceller, M. C., Guillén, M. I., Ferrándiz, M. L., & Alcaraz, M. J. (2015). Paracrine in vivo inhibitory effects of adipose tissue–derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy, 17(9), 1230-1239. doi:10.1016/j.jcyt.2015.06.001 | es_ES |
dc.description.references | Cathcart, M. K. (2004). Regulation of Superoxide Anion Production by NADPH Oxidase in Monocytes/Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(1), 23-28. doi:10.1161/01.atv.0000097769.47306.12 | es_ES |
dc.description.references | Corradin, S. B., Buchmüller-Rouiller, Y., & Mauël, J. (1991). Phagocytosis enhances murine macrophage activation by interferon-γ and tumor necrosis factor-α. European Journal of Immunology, 21(10), 2553-2558. doi:10.1002/eji.1830211036 | es_ES |
dc.description.references | Correia-Melo, C., Hewitt, G., & Passos, J. F. (2014). Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longevity & Healthspan, 3(1), 1. doi:10.1186/2046-2395-3-1 | es_ES |
dc.description.references | Young, L. M., Kheifets, J. B., Ballaron, S. J., & Young, J. M. (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and Actions, 26(3-4), 335-341. doi:10.1007/bf01967298 | es_ES |
dc.description.references | Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 | es_ES |
dc.description.references | Frieri, M. (1998). Nitric Oxide in Allergic Rhinitis and Asthma. Allergy and Asthma Proceedings, 19(6), 349-351. doi:10.2500/108854198778612708 | es_ES |
dc.description.references | GREAVES, D., & CHANNON, K. (2002). Inflammation and immune responses in atherosclerosis. Trends in Immunology, 23(11), 535-541. doi:10.1016/s1471-4906(02)02331-1 | es_ES |
dc.description.references | Haringman, J. J. (2005). Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 64(6), 834-838. doi:10.1136/ard.2004.029751 | es_ES |
dc.description.references | Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144-150. doi:10.1016/s1471-4906(01)02154-8 | es_ES |
dc.description.references | Hayashida, K., Nanki, T., Girschick, H., Yavuz, S., Ochi, T., & Lipsky, P. E. (2001). Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Research & Therapy, 3(2). doi:10.1186/ar149 | es_ES |
dc.description.references | Martel-Pelletier, J., Pelletier, J.-P., & Fahmi, H. (2003). Cyclooxygenase-2 and prostaglandins in articular tissues. Seminars in Arthritis and Rheumatism, 33(3), 155-167. doi:10.1016/s0049-0172(03)00134-3 | es_ES |
dc.description.references | Matata, B. M., & Galiñanes, M. (2001). Peroxynitrite Is an Essential Component of Cytokines Production Mechanism in Human Monocytes through Modulation of Nuclear Factor-κB DNA Binding Activity. Journal of Biological Chemistry, 277(3), 2330-2335. doi:10.1074/jbc.m106393200 | es_ES |
dc.description.references | Mattar, P., & Bieback, K. (2015). Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Frontiers in Immunology, 6. doi:10.3389/fimmu.2015.00560 | es_ES |
dc.description.references | Merino, A., Buendia, P., Martin-Malo, A., Aljama, P., Ramirez, R., & Carracedo, J. (2010). Senescent CD14+CD16+Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity. The Journal of Immunology, 186(3), 1809-1815. doi:10.4049/jimmunol.1001866 | es_ES |
dc.description.references | Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M., & Currie, M. G. (1993). A Fluorometric Assay for the Measurement of Nitrite in Biological Samples. Analytical Biochemistry, 214(1), 11-16. doi:10.1006/abio.1993.1449 | es_ES |
dc.description.references | Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149 | es_ES |
dc.description.references | MORONEY, M.-A., ALCARAZ, M. J., FORDER, R. A., CAREY, F., & HOULT, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787-792. doi:10.1111/j.2042-7158.1988.tb05173.x | es_ES |
dc.description.references | Mukaida, N. (1998). Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine & Growth Factor Reviews, 9(1), 9-23. doi:10.1016/s1359-6101(97)00022-1 | es_ES |
dc.description.references | Mytych, J., Romerowicz-Misielak, M., & Koziorowski, M. (2017). Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicology in Vitro, 42, 1-9. doi:10.1016/j.tiv.2017.03.009 | es_ES |
dc.description.references | Ofek, I., Goldhar, J., Keisari, Y., & Sharon, N. (1995). Nonopsonic Phagocytosis of Microorganisms. Annual Review of Microbiology, 49(1), 239-276. doi:10.1146/annurev.mi.49.100195.001323 | es_ES |
dc.description.references | Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric Oxide and Peroxynitrite in Health and Disease. Physiological Reviews, 87(1), 315-424. doi:10.1152/physrev.00029.2006 | es_ES |
dc.description.references | Parihar, A., Eubank, T. D., & Doseff, A. I. (2010). Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death. Journal of Innate Immunity, 2(3), 204-215. doi:10.1159/000296507 | es_ES |
dc.description.references | Platas, J., Guillén, M. I., del Caz, M. D. P., Gomar, F., Mirabet, V., & Alcaraz, M. J. (2013). Conditioned Media from Adipose-Tissue-Derived Mesenchymal Stem Cells Downregulate Degradative Mediators Induced by Interleukin-1βin Osteoarthritic Chondrocytes. Mediators of Inflammation, 2013, 1-10. doi:10.1155/2013/357014 | es_ES |
dc.description.references | Platas, J., Guillén, M. I., Pérez del Caz, M. D., Gomar, F., Castejón, M. A., Mirabet, V., & Alcaraz, M. J. (2016). Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging, 8(8), 1703-1717. doi:10.18632/aging.101007 | es_ES |
dc.description.references | Prockop, D. J., & Youn Oh, J. (2012). Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 20(1), 14-20. doi:10.1038/mt.2011.211 | es_ES |
dc.description.references | Rayner, B. S., Love, D. T., & Hawkins, C. L. (2014). Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radical Biology and Medicine, 71, 240-255. doi:10.1016/j.freeradbiomed.2014.03.004 | es_ES |
dc.description.references | Sheng, H., Wang, Y., Jin, Y., Zhang, Q., Zhang, Y., Wang, L., … Li, N. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846-857. doi:10.1038/cr.2008.80 | es_ES |
dc.description.references | Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762-774. doi:10.1038/nri3070 | es_ES |
dc.description.references | Shute, J. (2011). Glycosaminoglycan and Chemokine/Growth Factor Interactions. Handbook of Experimental Pharmacology, 307-324. doi:10.1007/978-3-642-23056-1_13 | es_ES |
dc.description.references | Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004 | es_ES |
dc.description.references | Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598 | es_ES |
dc.description.references | Zheng, G., Ge, M., Qiu, G., Shu, Q., & Xu, J. (2015). Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 1-11. doi:10.1155/2015/989473 | es_ES |