- -

Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria

Mostrar el registro completo del ítem

Polo, L.; Gómez-Cerezo, N.; García-Fernández, A.; Aznar, E.; Vivancos, J.; Arcos, D.; Vallet, M.... (2018). Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry - A European Journal. 24(71):18944-18951. https://doi.org/10.1002/chem.201803301

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143130

Ficheros en el ítem

Metadatos del ítem

Título: Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria
Autor: Polo, Lorena Gómez-Cerezo, N. García-Fernández, Alba Aznar, Elena Vivancos, José-Luis Arcos, Daniel Vallet, María Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application ...[+]
Palabras clave: Bioactive glasses , Controlled release , Drug delivery , Mesoporous materials
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201803301
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201803301
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/694160/EU/polyValent mEsopoRous nanosystem for bone DIseases/
info:eu-repo/grantAgreement/MINECO//MAT2016-75611-R/ES/NANOMATERIALES REGENERATIVOS EN ESCENARIOS DE PATOLOGIA OSEA: OSTEOPOROSIS E INFECCION/
info:eu-repo/grantAgreement/MINECO//MAT2015-64831-R/ES/NANOSISTEMA POLIVALENTE CAPAZ DE APORTAR SOLUCIONES PARA HUESO INFECTADO, CON CANCER Y OSTEOPOROTICO./
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
Agradecimientos:
The authors thank the Spanish Government for projects MAT2015-64139-C04-01-R, MAT2015-64831-R and MAT2016-75611-R (AEI/FEDER, UE). Generalitat Valenciana (project PROMETEOII/2014/047) and CIBER-BBN (project SPRING) are ...[+]
Tipo: Artículo

References

Li, J., & Wang, H.-L. (2008). Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dentistry, 17(4), 389-401. doi:10.1097/id.0b013e31818c4992

Herford, A. S., & Dean, J. S. (2011). Complications in Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23(3), 433-442. doi:10.1016/j.coms.2011.04.004

Arciola, C. R., Visai, L., Testoni, F., Arciola, S., Campoccia, D., Speziale, P., & Montanaro, L. (2011). Concise Survey ofStaphylococcus AureusVirulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. The International Journal of Artificial Organs, 34(9), 771-780. doi:10.5301/ijao.5000046 [+]
Li, J., & Wang, H.-L. (2008). Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dentistry, 17(4), 389-401. doi:10.1097/id.0b013e31818c4992

Herford, A. S., & Dean, J. S. (2011). Complications in Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23(3), 433-442. doi:10.1016/j.coms.2011.04.004

Arciola, C. R., Visai, L., Testoni, F., Arciola, S., Campoccia, D., Speziale, P., & Montanaro, L. (2011). Concise Survey ofStaphylococcus AureusVirulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. The International Journal of Artificial Organs, 34(9), 771-780. doi:10.5301/ijao.5000046

Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2015). A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 72, 128-136. doi:10.1016/j.bone.2014.11.019

Gerhardt, L.-C., & Boccaccini, A. R. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials, 3(7), 3867-3910. doi:10.3390/ma3073867

Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00202

Hench, L. (1980). Biomaterials. Science, 208(4446), 826-831. doi:10.1126/science.6246576

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

Yan, X. X., Deng, H. X., Huang, X. H., Lu, G. Q., Qiao, S. Z., Zhao, D. Y., & Yu, C. Z. (2005). Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 351(40-42), 3209-3217. doi:10.1016/j.jnoncrysol.2005.08.024

Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984. doi:10.1002/anie.200460598

Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie, 116(44), 6106-6110. doi:10.1002/ange.200460598

Gómez-Cerezo, N., Izquierdo-Barba, I., Arcos, D., & Vallet-Regí, M. (2015). Tailoring the biological response of mesoporous bioactive materials. Journal of Materials Chemistry B, 3(18), 3810-3819. doi:10.1039/c5tb00268k

Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. doi:10.1002/jbm.820050611

Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003

Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593. doi:10.1039/b922651f

Arcos, D., & Vallet-Regí, M. (2013). Bioceramics for drug delivery. Acta Materialia, 61(3), 890-911. doi:10.1016/j.actamat.2012.10.039

Zhu, Y., & Kaskel, S. (2009). Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 118(1-3), 176-182. doi:10.1016/j.micromeso.2008.08.046

Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 15(1), 93-114. doi:10.1080/17425247.2017.1360863

Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., … Guo, S. (2016). Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 29(5), 1603864. doi:10.1002/adma.201603864

Li, B. L., Setyawati, M. I., Chen, L., Xie, J., Ariga, K., Lim, C.-T., … Leong, D. T. (2017). Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 9(18), 15286-15296. doi:10.1021/acsami.7b02529

Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090

Vivero-Escoto, J. L., Slowing, I. I., Wu, C.-W., & Lin, V. S.-Y. (2009). Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. Journal of the American Chemical Society, 131(10), 3462-3463. doi:10.1021/ja900025f

Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876

López-Noriega, A., Ruiz-Hernández, E., Quinlan, E., Storm, G., Hennink, W. E., & O’Brien, F. J. (2014). Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 187, 158-166. doi:10.1016/j.jconrel.2014.05.043

Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g

Kim, H.-J., Matsuda, H., Zhou, H., & Honma, I. (2006). Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 18(23), 3083-3088. doi:10.1002/adma.200600387

Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631

Zhang, Z., Balogh, D., Wang, F., Tel-Vered, R., Levy, N., Sung, S. Y., … Willner, I. (2013). Light-induced and redox-triggered uptake and release of substrates to and from mesoporous SiO2 nanoparticles. Journal of Materials Chemistry B, 1(25), 3159. doi:10.1039/c3tb20292e

De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822

Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663

Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k

Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e

Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025

Bull, H. (2002). Acid phosphatases. Molecular Pathology, 55(2), 65-72. doi:10.1136/mp.55.2.65

Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227

Minkin, C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcified Tissue International, 34(1), 285-290. doi:10.1007/bf02411252

Raggatt, L. J., & Partridge, N. C. (2010). Cellular and Molecular Mechanisms of Bone Remodeling. Journal of Biological Chemistry, 285(33), 25103-25108. doi:10.1074/jbc.r109.041087

Wright, J. A., & Nair, S. P. (2010). Interaction of staphylococci with bone. International Journal of Medical Microbiology, 300(2-3), 193-204. doi:10.1016/j.ijmm.2009.10.003

Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487-1510. doi:10.1111/j.1151-2916.1991.tb07132.x

Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875. doi:10.1002/jps.2600501018

Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210

Aznar, E., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., Stroeve, P., Cano, J., & Amorós, P. (2012). Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 28(5), 2986-2996. doi:10.1021/la204438j

Mathew, R., Turdean-Ionescu, C., Stevensson, B., Izquierdo-Barba, I., García, A., Arcos, D., … Edén, M. (2013). Direct Probing of the Phosphate-Ion Distribution in Bioactive Silicate Glasses by Solid-State NMR: Evidence for Transitions between Random/Clustered Scenarios. Chemistry of Materials, 25(9), 1877-1885. doi:10.1021/cm400487a

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem