Mostrar el registro sencillo del ítem
dc.contributor.author | Polo, Lorena | es_ES |
dc.contributor.author | Gómez-Cerezo, N. | es_ES |
dc.contributor.author | García-Fernández, Alba | es_ES |
dc.contributor.author | Aznar, Elena | es_ES |
dc.contributor.author | Vivancos, José-Luis | es_ES |
dc.contributor.author | Arcos, Daniel | es_ES |
dc.contributor.author | Vallet, María | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2020-05-14T03:04:38Z | |
dc.date.available | 2020-05-14T03:04:38Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143130 | |
dc.description.abstract | [EN] An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies. In this work, a mesoporous bioglass functionalized with polyamines and capped with adenosine triphosphate (ATP) as the molecular gate was developed for the controlled release of the antibiotic levofloxacin. Phosphate bonds of ATP were hydrolyzed in the presence of acid phosphatase (APase), the concentration of which is significantly increased in bone infection due to the activation of bone resorption processes. The solid was characterized and tested successfully against bacteria. The final gated solid induced bacterial death only in the presence of acid phosphatase. Additionally, it was demonstrated that the solid is not toxic against human cells. The double function of the prepared material as a drug delivery system and bone regeneration enhancer confirms the possible development of a new approach in the tissue engineering field, in which controlled release of therapeutic agents can be finely tuned and, at the same time, osteoinduction is favored. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Government for projects MAT2015-64139-C04-01-R, MAT2015-64831-R and MAT2016-75611-R (AEI/FEDER, UE). Generalitat Valenciana (project PROMETEOII/2014/047) and CIBER-BBN (project SPRING) are also acknowledged for their support. M.V.R. acknowledges funding from the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal 694160). L.P. thanks Universitat Politecnica de Valencia for her FPI grant. N.G.C. and A.G. thank to Ministerio de Ciencia e Innovacion and Ministerio de Educacion, Cultura y Deporte for their predoctoral fellowships. The authors also thank the Electron Microscopy Service at the UPV for their support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bioactive glasses | es_ES |
dc.subject | Controlled release | es_ES |
dc.subject | Drug delivery | es_ES |
dc.subject | Mesoporous materials | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201803301 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/694160/EU/polyValent mEsopoRous nanosystem for bone DIseases/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75611-R/ES/NANOMATERIALES REGENERATIVOS EN ESCENARIOS DE PATOLOGIA OSEA: OSTEOPOROSIS E INFECCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64831-R/ES/NANOSISTEMA POLIVALENTE CAPAZ DE APORTAR SOLUCIONES PARA HUESO INFECTADO, CON CANCER Y OSTEOPOROTICO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Polo, L.; Gómez-Cerezo, N.; García-Fernández, A.; Aznar, E.; Vivancos, J.; Arcos, D.; Vallet, M.... (2018). Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry - A European Journal. 24(71):18944-18951. https://doi.org/10.1002/chem.201803301 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201803301 | es_ES |
dc.description.upvformatpinicio | 18944 | es_ES |
dc.description.upvformatpfin | 18951 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 71 | es_ES |
dc.identifier.pmid | 30203561 | es_ES |
dc.relation.pasarela | S\374964 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Li, J., & Wang, H.-L. (2008). Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dentistry, 17(4), 389-401. doi:10.1097/id.0b013e31818c4992 | es_ES |
dc.description.references | Herford, A. S., & Dean, J. S. (2011). Complications in Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23(3), 433-442. doi:10.1016/j.coms.2011.04.004 | es_ES |
dc.description.references | Arciola, C. R., Visai, L., Testoni, F., Arciola, S., Campoccia, D., Speziale, P., & Montanaro, L. (2011). Concise Survey ofStaphylococcus AureusVirulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. The International Journal of Artificial Organs, 34(9), 771-780. doi:10.5301/ijao.5000046 | es_ES |
dc.description.references | Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2015). A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 72, 128-136. doi:10.1016/j.bone.2014.11.019 | es_ES |
dc.description.references | Gerhardt, L.-C., & Boccaccini, A. R. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials, 3(7), 3867-3910. doi:10.3390/ma3073867 | es_ES |
dc.description.references | Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00202 | es_ES |
dc.description.references | Hench, L. (1980). Biomaterials. Science, 208(4446), 826-831. doi:10.1126/science.6246576 | es_ES |
dc.description.references | Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t | es_ES |
dc.description.references | Yan, X. X., Deng, H. X., Huang, X. H., Lu, G. Q., Qiao, S. Z., Zhao, D. Y., & Yu, C. Z. (2005). Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 351(40-42), 3209-3217. doi:10.1016/j.jnoncrysol.2005.08.024 | es_ES |
dc.description.references | Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984. doi:10.1002/anie.200460598 | es_ES |
dc.description.references | Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie, 116(44), 6106-6110. doi:10.1002/ange.200460598 | es_ES |
dc.description.references | Gómez-Cerezo, N., Izquierdo-Barba, I., Arcos, D., & Vallet-Regí, M. (2015). Tailoring the biological response of mesoporous bioactive materials. Journal of Materials Chemistry B, 3(18), 3810-3819. doi:10.1039/c5tb00268k | es_ES |
dc.description.references | Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. doi:10.1002/jbm.820050611 | es_ES |
dc.description.references | Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003 | es_ES |
dc.description.references | Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593. doi:10.1039/b922651f | es_ES |
dc.description.references | Arcos, D., & Vallet-Regí, M. (2013). Bioceramics for drug delivery. Acta Materialia, 61(3), 890-911. doi:10.1016/j.actamat.2012.10.039 | es_ES |
dc.description.references | Zhu, Y., & Kaskel, S. (2009). Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 118(1-3), 176-182. doi:10.1016/j.micromeso.2008.08.046 | es_ES |
dc.description.references | Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 15(1), 93-114. doi:10.1080/17425247.2017.1360863 | es_ES |
dc.description.references | Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., … Guo, S. (2016). Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 29(5), 1603864. doi:10.1002/adma.201603864 | es_ES |
dc.description.references | Li, B. L., Setyawati, M. I., Chen, L., Xie, J., Ariga, K., Lim, C.-T., … Leong, D. T. (2017). Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 9(18), 15286-15296. doi:10.1021/acsami.7b02529 | es_ES |
dc.description.references | Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 | es_ES |
dc.description.references | Vivero-Escoto, J. L., Slowing, I. I., Wu, C.-W., & Lin, V. S.-Y. (2009). Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. Journal of the American Chemical Society, 131(10), 3462-3463. doi:10.1021/ja900025f | es_ES |
dc.description.references | Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876 | es_ES |
dc.description.references | López-Noriega, A., Ruiz-Hernández, E., Quinlan, E., Storm, G., Hennink, W. E., & O’Brien, F. J. (2014). Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 187, 158-166. doi:10.1016/j.jconrel.2014.05.043 | es_ES |
dc.description.references | Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g | es_ES |
dc.description.references | Kim, H.-J., Matsuda, H., Zhou, H., & Honma, I. (2006). Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 18(23), 3083-3088. doi:10.1002/adma.200600387 | es_ES |
dc.description.references | Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631 | es_ES |
dc.description.references | Zhang, Z., Balogh, D., Wang, F., Tel-Vered, R., Levy, N., Sung, S. Y., … Willner, I. (2013). Light-induced and redox-triggered uptake and release of substrates to and from mesoporous SiO2 nanoparticles. Journal of Materials Chemistry B, 1(25), 3159. doi:10.1039/c3tb20292e | es_ES |
dc.description.references | De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 | es_ES |
dc.description.references | Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 | es_ES |
dc.description.references | Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k | es_ES |
dc.description.references | Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e | es_ES |
dc.description.references | Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025 | es_ES |
dc.description.references | Bull, H. (2002). Acid phosphatases. Molecular Pathology, 55(2), 65-72. doi:10.1136/mp.55.2.65 | es_ES |
dc.description.references | Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227 | es_ES |
dc.description.references | Minkin, C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcified Tissue International, 34(1), 285-290. doi:10.1007/bf02411252 | es_ES |
dc.description.references | Raggatt, L. J., & Partridge, N. C. (2010). Cellular and Molecular Mechanisms of Bone Remodeling. Journal of Biological Chemistry, 285(33), 25103-25108. doi:10.1074/jbc.r109.041087 | es_ES |
dc.description.references | Wright, J. A., & Nair, S. P. (2010). Interaction of staphylococci with bone. International Journal of Medical Microbiology, 300(2-3), 193-204. doi:10.1016/j.ijmm.2009.10.003 | es_ES |
dc.description.references | Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487-1510. doi:10.1111/j.1151-2916.1991.tb07132.x | es_ES |
dc.description.references | Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875. doi:10.1002/jps.2600501018 | es_ES |
dc.description.references | Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210 | es_ES |
dc.description.references | Aznar, E., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., Stroeve, P., Cano, J., & Amorós, P. (2012). Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 28(5), 2986-2996. doi:10.1021/la204438j | es_ES |
dc.description.references | Mathew, R., Turdean-Ionescu, C., Stevensson, B., Izquierdo-Barba, I., García, A., Arcos, D., … Edén, M. (2013). Direct Probing of the Phosphate-Ion Distribution in Bioactive Silicate Glasses by Solid-State NMR: Evidence for Transitions between Random/Clustered Scenarios. Chemistry of Materials, 25(9), 1877-1885. doi:10.1021/cm400487a | es_ES |
dc.description.references | Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 | es_ES |
dc.description.references | Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 | es_ES |