- -

Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Polo, Lorena es_ES
dc.contributor.author Gómez-Cerezo, N. es_ES
dc.contributor.author García-Fernández, Alba es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Vivancos, José-Luis es_ES
dc.contributor.author Arcos, Daniel es_ES
dc.contributor.author Vallet, María es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2020-05-14T03:04:38Z
dc.date.available 2020-05-14T03:04:38Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143130
dc.description.abstract [EN] An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies. In this work, a mesoporous bioglass functionalized with polyamines and capped with adenosine triphosphate (ATP) as the molecular gate was developed for the controlled release of the antibiotic levofloxacin. Phosphate bonds of ATP were hydrolyzed in the presence of acid phosphatase (APase), the concentration of which is significantly increased in bone infection due to the activation of bone resorption processes. The solid was characterized and tested successfully against bacteria. The final gated solid induced bacterial death only in the presence of acid phosphatase. Additionally, it was demonstrated that the solid is not toxic against human cells. The double function of the prepared material as a drug delivery system and bone regeneration enhancer confirms the possible development of a new approach in the tissue engineering field, in which controlled release of therapeutic agents can be finely tuned and, at the same time, osteoinduction is favored. es_ES
dc.description.sponsorship The authors thank the Spanish Government for projects MAT2015-64139-C04-01-R, MAT2015-64831-R and MAT2016-75611-R (AEI/FEDER, UE). Generalitat Valenciana (project PROMETEOII/2014/047) and CIBER-BBN (project SPRING) are also acknowledged for their support. M.V.R. acknowledges funding from the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal 694160). L.P. thanks Universitat Politecnica de Valencia for her FPI grant. N.G.C. and A.G. thank to Ministerio de Ciencia e Innovacion and Ministerio de Educacion, Cultura y Deporte for their predoctoral fellowships. The authors also thank the Electron Microscopy Service at the UPV for their support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bioactive glasses es_ES
dc.subject Controlled release es_ES
dc.subject Drug delivery es_ES
dc.subject Mesoporous materials es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201803301 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/694160/EU/polyValent mEsopoRous nanosystem for bone DIseases/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75611-R/ES/NANOMATERIALES REGENERATIVOS EN ESCENARIOS DE PATOLOGIA OSEA: OSTEOPOROSIS E INFECCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64831-R/ES/NANOSISTEMA POLIVALENTE CAPAZ DE APORTAR SOLUCIONES PARA HUESO INFECTADO, CON CANCER Y OSTEOPOROTICO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Polo, L.; Gómez-Cerezo, N.; García-Fernández, A.; Aznar, E.; Vivancos, J.; Arcos, D.; Vallet, M.... (2018). Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry - A European Journal. 24(71):18944-18951. https://doi.org/10.1002/chem.201803301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201803301 es_ES
dc.description.upvformatpinicio 18944 es_ES
dc.description.upvformatpfin 18951 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 71 es_ES
dc.identifier.pmid 30203561 es_ES
dc.relation.pasarela S\374964 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Li, J., & Wang, H.-L. (2008). Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dentistry, 17(4), 389-401. doi:10.1097/id.0b013e31818c4992 es_ES
dc.description.references Herford, A. S., & Dean, J. S. (2011). Complications in Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23(3), 433-442. doi:10.1016/j.coms.2011.04.004 es_ES
dc.description.references Arciola, C. R., Visai, L., Testoni, F., Arciola, S., Campoccia, D., Speziale, P., & Montanaro, L. (2011). Concise Survey ofStaphylococcus AureusVirulence Factors that Promote Adhesion and Damage to Peri-Implant Tissues. The International Journal of Artificial Organs, 34(9), 771-780. doi:10.5301/ijao.5000046 es_ES
dc.description.references Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2015). A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 72, 128-136. doi:10.1016/j.bone.2014.11.019 es_ES
dc.description.references Gerhardt, L.-C., & Boccaccini, A. R. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials, 3(7), 3867-3910. doi:10.3390/ma3073867 es_ES
dc.description.references Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 3. doi:10.3389/fbioe.2015.00202 es_ES
dc.description.references Hench, L. (1980). Biomaterials. Science, 208(4446), 826-831. doi:10.1126/science.6246576 es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references Yan, X. X., Deng, H. X., Huang, X. H., Lu, G. Q., Qiao, S. Z., Zhao, D. Y., & Yu, C. Z. (2005). Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 351(40-42), 3209-3217. doi:10.1016/j.jnoncrysol.2005.08.024 es_ES
dc.description.references Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984. doi:10.1002/anie.200460598 es_ES
dc.description.references Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie, 116(44), 6106-6110. doi:10.1002/ange.200460598 es_ES
dc.description.references Gómez-Cerezo, N., Izquierdo-Barba, I., Arcos, D., & Vallet-Regí, M. (2015). Tailoring the biological response of mesoporous bioactive materials. Journal of Materials Chemistry B, 3(18), 3810-3819. doi:10.1039/c5tb00268k es_ES
dc.description.references Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. doi:10.1002/jbm.820050611 es_ES
dc.description.references Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003 es_ES
dc.description.references Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593. doi:10.1039/b922651f es_ES
dc.description.references Arcos, D., & Vallet-Regí, M. (2013). Bioceramics for drug delivery. Acta Materialia, 61(3), 890-911. doi:10.1016/j.actamat.2012.10.039 es_ES
dc.description.references Zhu, Y., & Kaskel, S. (2009). Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 118(1-3), 176-182. doi:10.1016/j.micromeso.2008.08.046 es_ES
dc.description.references Lembo, D., Donalisio, M., Civra, A., Argenziano, M., & Cavalli, R. (2017). Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 15(1), 93-114. doi:10.1080/17425247.2017.1360863 es_ES
dc.description.references Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., … Guo, S. (2016). Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 29(5), 1603864. doi:10.1002/adma.201603864 es_ES
dc.description.references Li, B. L., Setyawati, M. I., Chen, L., Xie, J., Ariga, K., Lim, C.-T., … Leong, D. T. (2017). Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 9(18), 15286-15296. doi:10.1021/acsami.7b02529 es_ES
dc.description.references Komiyama, M., Yoshimoto, K., Sisido, M., & Ariga, K. (2017). Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 90(9), 967-1004. doi:10.1246/bcsj.20170156 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 es_ES
dc.description.references Vivero-Escoto, J. L., Slowing, I. I., Wu, C.-W., & Lin, V. S.-Y. (2009). Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. Journal of the American Chemical Society, 131(10), 3462-3463. doi:10.1021/ja900025f es_ES
dc.description.references Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876 es_ES
dc.description.references López-Noriega, A., Ruiz-Hernández, E., Quinlan, E., Storm, G., Hennink, W. E., & O’Brien, F. J. (2014). Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 187, 158-166. doi:10.1016/j.jconrel.2014.05.043 es_ES
dc.description.references Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g es_ES
dc.description.references Kim, H.-J., Matsuda, H., Zhou, H., & Honma, I. (2006). Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 18(23), 3083-3088. doi:10.1002/adma.200600387 es_ES
dc.description.references Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631 es_ES
dc.description.references Zhang, Z., Balogh, D., Wang, F., Tel-Vered, R., Levy, N., Sung, S. Y., … Willner, I. (2013). Light-induced and redox-triggered uptake and release of substrates to and from mesoporous SiO2 nanoparticles. Journal of Materials Chemistry B, 1(25), 3159. doi:10.1039/c3tb20292e es_ES
dc.description.references De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 es_ES
dc.description.references Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k es_ES
dc.description.references Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e es_ES
dc.description.references Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025 es_ES
dc.description.references Bull, H. (2002). Acid phosphatases. Molecular Pathology, 55(2), 65-72. doi:10.1136/mp.55.2.65 es_ES
dc.description.references Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227 es_ES
dc.description.references Minkin, C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcified Tissue International, 34(1), 285-290. doi:10.1007/bf02411252 es_ES
dc.description.references Raggatt, L. J., & Partridge, N. C. (2010). Cellular and Molecular Mechanisms of Bone Remodeling. Journal of Biological Chemistry, 285(33), 25103-25108. doi:10.1074/jbc.r109.041087 es_ES
dc.description.references Wright, J. A., & Nair, S. P. (2010). Interaction of staphylococci with bone. International Journal of Medical Microbiology, 300(2-3), 193-204. doi:10.1016/j.ijmm.2009.10.003 es_ES
dc.description.references Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487-1510. doi:10.1111/j.1151-2916.1991.tb07132.x es_ES
dc.description.references Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875. doi:10.1002/jps.2600501018 es_ES
dc.description.references Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210 es_ES
dc.description.references Aznar, E., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., Stroeve, P., Cano, J., & Amorós, P. (2012). Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 28(5), 2986-2996. doi:10.1021/la204438j es_ES
dc.description.references Mathew, R., Turdean-Ionescu, C., Stevensson, B., Izquierdo-Barba, I., García, A., Arcos, D., … Edén, M. (2013). Direct Probing of the Phosphate-Ion Distribution in Bioactive Silicate Glasses by Solid-State NMR: Evidence for Transitions between Random/Clustered Scenarios. Chemistry of Materials, 25(9), 1877-1885. doi:10.1021/cm400487a es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem