- -

Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas

Show simple item record

Files in this item

dc.contributor.author García, Marcelo V es_ES
dc.contributor.author Irisarri, Edurne es_ES
dc.contributor.author Pérez, Federico es_ES
dc.contributor.author Estévez, Elisabet es_ES
dc.contributor.author Marcos, Marga es_ES
dc.date.accessioned 2020-05-14T07:27:37Z
dc.date.available 2020-05-14T07:27:37Z
dc.date.issued 2018-03-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143158
dc.description.abstract [ES] Es evidente que en los próximos años gran parte de las tecnologías recogidas bajo el marco de la denominada Industria 4.0 tendrá un profundo impacto en todas las empresas y entre ellas, en las relacionadas con la explotación y producción de petróleo y gas. La automatización de bajo coste promueve arquitecturas de referencia rentables y nuevos enfoques de desarrollo para aumentar la flexibilidad y la eficiencia de las operaciones de producción en una planta industrial. En este sentido, OPC UA, proporciona acceso local y remoto a la información de planta, facilitando un mecanismo reconocido de integración tanto horizontal como vertical de manera correcta, segura y eficiente. El objetivo principal de este artículo es presentar una arquitectura abierta para la integración vertical basada en sistemas ciber-físicos de producción, configurados bajo la norma IEC 61499 y usando OPC UA, apta para su utilización en la fabricación flexible en la industria de petróleo ygas. es_ES
dc.description.abstract [EN] It is clear that in the next few years most of the technologies involved in the so-called Industry 4.0 will have a deep impact on manufacturing companies, including those related to Oil & Gas exploration and production. Low cost automation promotes reference architectures and development approaches aiming at increasing the flexibility and efficiency of production operations in industrial plants. In this sense, OPC UA, in addition to allowing companies to join the Industry 4.0 initiative, provides local and remote access to plant information, enabling a recognized mechanism for both, horizontal and vertical integration in a reliable, safe and efficient way. The contribution of this article is an open architecture for vertical integration based on cyber-physical production systems, configured under IEC 61499 and using OPC UA, suitable to achieve flexible manufacturing within Oil & Gas industry. es_ES
dc.description.sponsorship Este trabajo ha sido financiado por el MINECO/FEDER, UE del Gobierno de España bajo el proyecto DPI2015-68602-R y por el Gobierno Vasco/EJ bajo el reconocimiento de grupo de investigación IT914-16. Así mismo como al Gobierno Ecuatoriano a través de la Beca SENESCYT “Convocatoria abierta 2013”. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation MINECO-FEDER/ DPI2015-68602-R es_ES
dc.relation Gobierno Vasco/Eusko Jaurlaritza/IT914-16 es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Industry 4.0 es_ES
dc.subject Industrial Systems Integration es_ES
dc.subject Cyber-Physical Production Systems es_ES
dc.subject OPC UA es_ES
dc.subject IEC 61499 es_ES
dc.subject Industria 4.0 es_ES
dc.subject Integración de Sistemas Industriales es_ES
dc.subject Sistemas de Producción Ciber-Físicos es_ES
dc.title Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas es_ES
dc.title.alternative Automation Architecture based on Cyber Physical Systems for Flexible Manufacturing within Oil&Gas Industry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2017.8823
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García, MV.; Irisarri, E.; Pérez, F.; Estévez, E.; Marcos, M. (2018). Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas. Revista Iberoamericana de Automática e Informática industrial. 15(2):156-166. https://doi.org/10.4995/riai.2017.8823 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2017.8823 es_ES
dc.description.upvformatpinicio 156 es_ES
dc.description.upvformatpfin 166 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8823 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.relation.references DIAC, 2017. IEC 61499 Implementation for Distributed. Available at: https://eclipse.org/4diac/ es_ES
dc.relation.references Claassen, A., Rohjans, S. & Lehnhoff Member, S., 2011. Application of the OPC UA for the Smart Grid. In 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies. IEEE, pp. 1-8. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6162627. es_ES
dc.relation.references Garcia, M. V. et al., 2014. Building industrial CPS with the IEC 61499 standard on low-cost hardware platforms. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp.1-4. https://doi.org/10.1109/ETFA.2014.7005272 es_ES
dc.relation.references Garcia, M. V. et al., 2015. Developing CPPS within IEC-61499 based on low cost devices. IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2015-July, pp.1-4. es_ES
dc.relation.references GmbH, 4DIAC Consortium. PROFACTOR, 2010. Framework for Distributed Industrial Automation and Control (4DIAC). Available at: http://www.fordiac.org. es_ES
dc.relation.references Hazarika, P. et al., 2015. Mobile cloud integration for industrial data interchange. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, pp.1118-1122. https://doi.org/10.1109/ICACCI.2015.7275760 es_ES
dc.relation.references Hussain, T. & Frey, G., 2004. Developing IEC 61499 compliant distributed systems with network enabled controllers. In IEEE Conference on Robotics, Automation and Mechatronics, 2004. IEEE, pp. 507-512. Available at: http://ieeexplore.ieee.org/document/1438972/. es_ES
dc.relation.references International Electrotechnical Commission, 2014. International Electrotechnical Commission Std. (2005) IEC 61499: Function blocks, Part 1-4. Available at: http://www.iec.ch. es_ES
dc.relation.references Jain, S., Yuan, C. & Ferreira, P., 2002. EMBench: A Rapid Prototyping Environment for Numerical Control Systems. In Dynamic Systems and Control. ASME, pp. 7-13. Available at: http://proceedings.asmedigita lcollection.asme.org/proceeding.aspx?articleid=1580998. es_ES
dc.relation.references Kim, J. et al., 2014. M2M service platforms: Survey, issues, and enabling technologies. IEEE Communications Surveys and Tutorials, 16(1), pp.61-76. https://doi.org/10.1109/SURV.2013.100713.00203 es_ES
dc.relation.references van der Linden, D. et al., 2011. An OPC UA interface for an evolvable ISA88 control module. In ETFA2011. IEEE, pp. 1-9. Available at: http://ieeexplore.ieee.org/document/6058978/. https://doi.org/10.1109/ETFA.2011.6058978 es_ES
dc.relation.references Olsen, S. et al., 2005. Contingencies-based reconfiguration of distributed factory automation. Robotics and Computer-Integrated Manufacturing, 21(4-5), pp.379-390. https://doi.org/10.1016/j.rcim.2004.11.011 es_ES
dc.relation.references Perez, F. et al., 2015. A CPPS Architecture approach for Industry 4.0. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, pp. 1-4. Available at: http://ieeexplore.ieee.org/document/7301606/. es_ES
dc.relation.references Querol, E. et al., 2016. Evaluation of closed loop control applications using different event management strategies under IEC 61499. In 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). IEEE, pp. 1-8. Available at: http://ieeexplore.ieee.org/document/7605263/. es_ES
dc.relation.references Rentschler, M., Trsek, H. & Durkop, L., 2016. OPC UA extension for IP auto-configuration in cyber-physical systems. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, pp. 26-31. Available at: http://ieeexplore.ieee.org/document/7819128/. es_ES
dc.relation.references Sande, O., Fojcik, M. & Cupek, R., 2010. OPC UA Based Solutions for Integrated Operations. Communications in Computer and Information Science, 79, pp.76-83. https://doi.org/10.1007/978-3-642-13861-4_8 es_ES
dc.relation.references Schwab, C., Tangermann, M. & Ferrarini, L., 2005. Web based methodology for engineering and maintenance of distributed control systems: the TORERO approach. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 32-37. Available at: http://ieeexplore.ieee.org/document/1560348/. https://doi.org/10.1109/INDIN.2005.1560348 es_ES
dc.relation.references Stambolov, G. & Batchkova, I., 2011. Reconfiguration processes in manufacturing systems on the base of IEC 61499 standard. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems. IEEE, pp. 161-166. Available at: http://ieeexplore.ieee.org/document/6072731/. https://doi.org/10.1109/IDAACS.2011.6072731 es_ES
dc.relation.references Stojmenovic, I., 2014. Machine-to-Machine Communications with In-network Data Aggregation, Processing and Actuation for Large Scale Cyber-Physical Systems. IEEE Internet of Things Journal, PP(99), pp.1-1. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6766661. es_ES
dc.relation.references Strasser, T. et al., 2011. Design and Execution Issues in IEC 61499 Distributed Automation and Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), pp.41-51. Available at: http://ieeexplore.ieee.org/document/5571034/. https://doi.org/10.1109/TSMCC.2010.2067210 es_ES
dc.relation.references Strasser, T., Auinger, F. & Zoitl, A., 2004. Development, implementation and use of an IEC 61499 function block library for embedded closed loop control. In 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN '04. 2004. IEEE, pp. 594-599. Available at: http://ieeexplore.ieee.org/document/1417415/. https://doi.org/10.1109/INDIN.2004.1417415 es_ES
dc.relation.references Thramboulidis, K. & Tranoris, C., 2001. An architecture for the development of function block oriented engineering support systems. In Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515). IEEE, pp. 536-542. Available at: http://ieeexplore.ieee.org/document/ 1013258/https://doi.org/10.1109/CIRA.2001.1013258 es_ES
dc.relation.references Vicaire, P.A. et al., 2012. Bundle : A Group-Based Programming Abstraction for Cyber-Physical Systems. , 8(2), pp.379-392. es_ES
dc.relation.references Vyatkin, V., Cheng Pang & Tripakis, S., 2015. Towards cyber-physical agnosticism by enhancing IEC 61499 with PTIDES model of computations. In IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 001970-001975. Available at: http://ieeexplore.ieee.org/document/7392389/. es_ES
dc.relation.references Wang, L. et al., 2001. Realizing Holonic Control with Function Blocks. Integr. Comput.-Aided Eng., 8(1), pp.81-93. Available at: http://dl.acm.org/citation.cfm?id=1275723.1275730. es_ES
dc.relation.references Wang, L., Keshavarzmanesh, S. & Feng, H.Y., 2008. Design of adaptive function blocks for dynamic assembly planning and control. Journal of Manufacturing Systems, 27(1), pp.45-51. Available at: es_ES
dc.relation.references https://doi.org/10.1016/j.jmsy.2008.06.003 es_ES
dc.relation.references Wang, L., Song, Y. & Gao, Q., 2009. Designing function blocks for distributed process planning and adaptive control. Engineering Applications of Artificial Intelligence, 22(7), pp.1127-1138. Available at: es_ES
dc.relation.references https://doi.org/10.1016/j.engappai.2008.11.008 es_ES
dc.relation.references Yuan, C. & Ferreira, P., 2004. An Integrated Environment for the Design and Control of Deadlock-Free Flexible Manufacturing Cells. In Manufacturing Engineering and Materials Handling Engineering. ASME, pp. 471-481. Available at: http://proceedings. asmedigitalcollection.asme.org/ proceeding.aspx?articleid=1652663. es_ES
dc.relation.references Zawawi, A. El & El-Sayed, A., 2012. Integration of DCS and ESD through an OPC application for upstream Oil and Gas. IEEE Power and Energy Society General Meeting, pp.1-5. es_ES
dc.relation.references Zoitl, A. et al., 2005. Executing real-time constrained control applications modelled in IEC 61499 with respect to dynamic reconfiguration. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 62-67. Available at: http://ieeexplore.ieee.org/document/1560353/. https://doi.org/10.1109/INDIN.2005.1560353 es_ES


This item appears in the following Collection(s)

Show simple item record