- -

GlSch: Planificación de Observaciones en la red de Telescopios GLORIA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

GlSch: Planificación de Observaciones en la red de Telescopios GLORIA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Casado, Carmen es_ES
dc.contributor.author Pérez del Pulgar Mancebo, Carlos Jesús es_ES
dc.contributor.author Muñoz Martínez, Víctor Fernando es_ES
dc.contributor.author Castro Tirado, Alberto es_ES
dc.coverage.spatial east=-6.734059999999999; north=37.10402; name=BOOTES-1, Moguer, Huelva, Espanya es_ES
dc.coverage.spatial east=-4.040999999999999; north=36.7592; name=BOOTES-2, Algarrobo, Málaga, Espanya es_ES
dc.coverage.spatial east=173.503639; north=-41.294792; name=BOOTES-3, Pelorus Bridge 7192, Nova Zelanda es_ES
dc.coverage.spatial east=-4.3827778; north=40.4527778; name=CAB-CEB, Cebreros, 05260, Àvila, Espanya es_ES
dc.coverage.spatial east=-2.5503; north=37.2230167; name=CAB-CAHA, 04550 Gérgal, Almeria, Espanya es_ES
dc.coverage.spatial east=14.7819042; north=49.9090492; name=BART, Fričova 242, 251 65 Ondřejov, Txèquia es_ES
dc.coverage.spatial east=-69.45; north=-35.1666667; name=FRAM, Malargüe, Província de Mendoza, Argentina es_ES
dc.coverage.spatial east=-68.1666667; north=-22.95; name=Pi of the Sky 1, San Pedro de Atacama, Antofagasta, Xile es_ES
dc.coverage.spatial east=-6.7333333; north=37.1; name=Pi of the Sky 2, Moguer, Huelva, Espanya es_ES
dc.coverage.spatial east=26; north=-29; name=WATCHER, Mangaung, Sud-àfrica es_ES
dc.coverage.spatial east=-3.75; north=40.4166667; name=OM, Casa de Campo, Madrid, Espanya es_ES
dc.coverage.spatial east=-16.50949; north=28.298566; name=TAD, Güímar, Santa Cruz de Tenerife, Espanya es_ES
dc.coverage.spatial east=14.781417846679688; north=49.90918083723351; name=D50, Ondřejov, Txèquia es_ES
dc.coverage.spatial east=41.43235; north=43.65722; name=TORTORA, Karatxai-Txerkèssia, Rússia, 369167 es_ES
dc.coverage.spatial east=-70.7316; north=-29.2612; name=REM, La Higuera, Coquimbo, Xile es_ES
dc.date.accessioned 2020-05-14T13:41:45Z
dc.date.available 2020-05-14T13:41:45Z
dc.date.issued 2018-06-22
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143254
dc.description.abstract [EN] This paper proposes the design and development of a telescope network scheduler for the GLORIA telescope network. This telescope network, which main objective is helping users to get involved in astronomy research, is composed by 18 heterogeneous telescopes located in different countries. These telescopes are managed by the scheduler to execute the observations requested by the users. A key module of this scheduler is the telescope decision algorithm which objective is to avoid serving an observation to a telescope that cannot execute it. This paper proposes two different algorithms: the first one is based on weather forecast, and the other one is based on fuzzy logic. Both algorithms were deployed and used into the GLORIA network, an analysis of the results and a performance comparative between both algorithm are shown in this paper. As well, the scheduler architecture based on a hybrid distributed-centralised schema is detailed. es_ES
dc.description.abstract [ES] Este artículo propone el diseño y desarrollo de un planificador para la red de telescopios GLORIA. Esta red, cuyo principal objetivo es acercar los ciudadanos a la astronomía, está formada por 18 telescopios ubicados en cuatro continentes. Parte de la gestión de esta red se lleva a cabo por el planificador, que se encarga de recibir peticiones de observación de usuarios de usuarios y enviárselas a uno de los telescopios de la red. Para esto, necesita un algoritmo que decida el mejor telescopio, evitando ofrecer una petición a un telescopio que finalmente no pueda ejecutarla. Este artículo presenta dos algoritmos de decisión: el primero se basa únicamente en la predicción meteorológica, y el segundo emplea lógica difusa e información de cada telescopio. Ambos algoritmos fueron implantados en la red GLORIA. Los resultados obtenidos, así como una comparativa del rendimiento de ambos se presenta en este artículo. Así mismo, se detalla la arquitectura del planificador basada en una estructura híbrida distribuida-centralizada. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al proyecto GLORIA. GLObal Robotic telescopes Intelligent Array for e-Science (GLORIA) es un proyecto financiado por la Unión Europea bajo el Séptimo Programa Marco (FP7/2007-2012) bajo la concesión número 283783. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Network es_ES
dc.subject Telescopes es_ES
dc.subject Scheduling algorithms es_ES
dc.subject Fuzzy logic es_ES
dc.subject Software es_ES
dc.subject Red es_ES
dc.subject Telescopios es_ES
dc.subject Algoritmos de planificación es_ES
dc.subject Lógica difusa es_ES
dc.title GlSch: Planificación de Observaciones en la red de Telescopios GLORIA es_ES
dc.title.alternative GlSch: Observation plan scheduler for the GLORIA telescope network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2018.8640
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/283783/EU/GLObal Robotic telescopes Intelligent Array for e-Science/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation López Casado, C.; Pérez Del Pulgar Mancebo, CJ.; Muñoz Martínez, VF.; Castro Tirado, A. (2018). GlSch: Planificación de Observaciones en la red de Telescopios GLORIA. Revista Iberoamericana de Automática e Informática industrial. 15(3):339-350. https://doi.org/10.4995/riai.2018.8640 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2018.8640 es_ES
dc.description.upvformatpinicio 339 es_ES
dc.description.upvformatpfin 350 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8640 es_ES
dc.description.references Andújar Márquez, J., Mateo Sanguino, T., 1 2010. Diseño de Laboratorios Virtuales y/o Remotos. Un Caso Práctico. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (1), 64-72. DOI:10.1016/S1697-7912(10)70009-1 es_ES
dc.description.references Arregui, J. P., Tejo, J. A., Linares López, C., Borrajo, D., 2012. Steps towards and operational sensor network planning for space surveillance. In: Proceedings of the SpaceOps. DOI:10.2514/6.2012-1294728 es_ES
dc.description.references Bakos, G., Gaspar, 2016. Finding and Characterizing a Large and Diverse Population of Transiting Exoplanets with HATSouth in Support of NASA Space Missions. NASA Proposal #16-XRP16-70. es_ES
dc.description.references Beskin, G., Bad'in, V., Biryukov, A., et al., 7 2005. FAVOR (FAst Variability Optical Registration) - A Two-telescope Complex for Detection and Investigation of Short Optical Transients. Il Nuovo Cimento, 751-754. DOI:10.1393/ncc/i2005-10146-9 es_ES
dc.description.references Bigongiari, C., Consortium, C., 2016. The Cherenkov Telescope Array. Nuclear and Particle Physics Proceedings 279, 174-181. DOI:10.1016/j.nuclphysbps.2016.10.025 es_ES
dc.description.references Boër, M., Klotz, A., Laugier, R., et al., 2017. TAROT: a network for space surveillance and tracking operations. 7th European Conference on Space Debris ESA/ESOC. es_ES
dc.description.references Castro-Tirado, A. J., Jelínek, M., Gorosabel, J., et al., 2012. Building the BOOTES world-wide Network of Robotic telescopes. Astronomical Society of India Conference Series, Vol. 7, 2012, p. 313-320 7, 313-320. es_ES
dc.description.references Castro-Tirado, A. J., Sánchez Moreno, F. M., Pérez del Pulgar, C., et al., 2014.The GLObal Robotic telescopes Intelligent Array for E-Science (GLORIA). Revista Mexicana de Astronomía y Astrofísica 45, 104-109. es_ES
dc.description.references Castro-Tirado, A. J., Soldán, J., Bernas, M., et al., 9 1999. The Burst Observerand Optical Transient Exploring System (BOOTES). Astronomy and Astrophysics Supplement Series 138 (3), 583-585. DOI:10.1051/aas:1999362 es_ES
dc.description.references Delgado, F., Reuter, M. A., 7 2016. The LSST Scheduler from design to construction. SPIE Astronomical Telescopes+ Instrumentation, 991013.DOI:10.1117/12.2233630 es_ES
dc.description.references Denny, R., 2011. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System. In: Telescopes from Afar Conference. p. 47. es_ES
dc.description.references Ducci, L., Covino, S., Doroshenko, V., Mereghetti, S., Santangelo, A., Sasa-ki, M., 11 2016. Optical and near-infrared photometric monitoring of the transient X-ray binary A0538 with REM. Astronomy and Astrophysics 595,A103. DOI:10.1051/0004-6361/201629236 es_ES
dc.description.references Falomo, R., Fantinel, D., Uslenghi, M., 9 2011. AETC: Advanced Exposure Time Calculator. In: Tescher, A. G. (Ed.), Applications of Digital Image Processing XXXIV. International Society for Optics and Photonics, pp.813523-. DOI:10.1117/12.913304 es_ES
dc.description.references Gresham, K. C., Palma, C., Polsgrove, D. E., Chun, F. K., Della-Rose, D. J.,Tippets, R. D., 2016. Education and outreach using the falcon telescope network. Acta Astronautica 129, 130-134. DOI:10.1016/j.actaastro.2016.09.006 es_ES
dc.description.references Hamuy, M., Pignata, G., Maza, J., et al., 2012. The CHilean Automatic Supernova sEarch. Memorie della Societa Astronomica Italiana 83, 388-392. es_ES
dc.description.references Jelínek, M., Castro-Tirado, A. J., Cunnie, R., et al., 2016. A decade of GRB follow-up by BOOTES in Spain (2003-2013). Advances in Astronomy. es_ES
dc.description.references Karpov, S., Beskin, G., Biryukov, A., et al., 2016. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation. IV Workshop on Robotic Autonomous Observatories (Eds. María Dolores Caballero-García, Shasi B. Pandey, David Hiriart & AlbertoJ. Castro-Tirado) Revista Mexicana de Astronomía y Astroísica (Serie de Conferencias) Vol. 48, pp. 91-96 (2016) 48, 91-96. es_ES
dc.description.references Kubánek, P., 7 2016. Status, upgrades, and advances of RTS2: the open source astronomical observatory manager. In: Chiozzi, G., Guzman, J. C. (Eds.),SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99132U.DOI:10.1117/12.2232555 es_ES
dc.description.references Lampoudi, S., Saunders, E., Eastman, J., 2015. An integer linear programming solution to the telescope network scheduling problem. In: International Conference on Operations Research and Enterprise Systems. es_ES
dc.description.references Mankiewicz, L., Batsch, T., Castro-Tirado, A., et al., 2014. Pi of the Sky full system and the new telescope. III Workshop on Robotic Autonomous Observatories (Eds. Juan C. Tello, Alberto Riva, David Hiriart & Alberto J. Castro-Tirado) Revista Mexicana de Astronomía y Astrofísica (Serie de Conferenias) Vol. 45, pp. 7-11 (2014) 45, 7-11. es_ES
dc.description.references myweather2, 2017. Free weather API - XML weather and JSON weather feed for global locations. URL:http://www.myweather2.com es_ES
dc.description.references Nekola, M., Hudec, R., Jelínek, M., Kubánek, P., Štrobl, J., Polášek, C., 2010. BART: The Czech Autonomous Observatory. Advances in Astronomy 2010,1-5. DOI:10.1155/2010/103986 es_ES
dc.description.references Ocaña, F., Ibarra, A., Racero, E., Montero, A., Doubek, J., Ruiz, V., 7 2016. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning. In: Hall, H. J., Gilmozzi, R., Marshall, H. K. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 990666. DOI:10.1117/12.2233142 es_ES
dc.description.references Ottinger, J., Linwood, J., Minter, D., 2014. Beginning Hibernate 3rd, 3rd Edition. Apress Berkely, CA, USA. es_ES
dc.description.references Panetta, M. P., 2016. The EEE Project: An extended network of muon telescopes for the study of cosmic rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824, 642-643. DOI:10.1016/j.nima.2015.10.073 es_ES
dc.description.references Pickles, A., Hjelstrom, A., Boroson, T., et al., 8 2014. LCOGT network observatory operations. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 914912. DOI:10.1117/12.2055215 es_ES
dc.description.references Racero, E., Ocaña, F., Ponz, D., 2015. Towards an autonomous telescope system: the Test-Bed Telescope project. Highlights of Spanish Astrophysics, 828-833. es_ES
dc.description.references Saunders, E. S., Lampoudi, S., Lister, T. A., Norbury, M., Walker, Z., 8 2014. Novel scheduling approaches in the era of multi-telescope networks. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 91490E. DOI:10.1117/12.2056642Sky-Map, 2017. es_ES
dc.description.references Sky-Map. URL:http://www.sky-map.org/ es_ES
dc.description.references Solar, M., Michelon, P., Avarias, J., Garces, M., 2016. A scheduling model forastronomy. Astronomy and Computing 15, 90-104. DOI:10.1016/j.ascom.2016.02.005 es_ES
dc.description.references Sosnowska, D., Ouadahi, A., Buchschacher, N., Weber, L., Pepe, F., 2014.Using Heuristic Algorithms to Optimize Observing Target Sequences. In: Astronomical Data Analysis Software and Systems XXIII. Vol. 485. p. 73. es_ES
dc.description.references Trillas, E., Eciolaza, L., 2015. Fuzzy Logic. Springer International Publishing.DOI:10.1007/978-3-319-14203-6 es_ES
dc.description.references Volgenau, N., Boroson, T., 7 2016. Two years of LCOGT operations: the challenges of a global observatory. In: Peck, A. B., Seaman, R. L., Benn, C. R.(Eds.), SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99101C. DOI:10.1117/12.2233830 es_ES
dc.description.references Wang, F., Deng, H., Guo, L., Ji, K., 7 2010. A Survey on Scientific-Workflow Techniques for E-science in Astronomy. In: 2010 International Forum on In-formation Technology and Applications. IEEE, pp. 417-420. DOI:10.1109/IFITA.2010.210 es_ES
dc.description.references Ye, Q.-Z., 2011. Forecasting Cloud Cover and Atmospheric Seeing for Astronomical Observing: Application and Evaluation of the Global Forecast System. Publications of the Astronomical Society of the Pacific 123, 113. es_ES
dc.description.references Zimmer, P., McGraw, J., Ackermann, M., 2015. Real-Time Optical Surveillance of LEO/MEO with Small Telescopes. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 15-18, 2014, Ed.: S. Ryan, The Maui Economic Development Board, id.103. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem