Mostrar el registro sencillo del ítem
dc.contributor.author | López Casado, Carmen | es_ES |
dc.contributor.author | Pérez del Pulgar Mancebo, Carlos Jesús | es_ES |
dc.contributor.author | Muñoz Martínez, Víctor Fernando | es_ES |
dc.contributor.author | Castro Tirado, Alberto | es_ES |
dc.coverage.spatial | east=-6.734059999999999; north=37.10402; name=BOOTES-1, Moguer, Huelva, Espanya | es_ES |
dc.coverage.spatial | east=-4.040999999999999; north=36.7592; name=BOOTES-2, Algarrobo, Málaga, Espanya | es_ES |
dc.coverage.spatial | east=173.503639; north=-41.294792; name=BOOTES-3, Pelorus Bridge 7192, Nova Zelanda | es_ES |
dc.coverage.spatial | east=-4.3827778; north=40.4527778; name=CAB-CEB, Cebreros, 05260, Àvila, Espanya | es_ES |
dc.coverage.spatial | east=-2.5503; north=37.2230167; name=CAB-CAHA, 04550 Gérgal, Almeria, Espanya | es_ES |
dc.coverage.spatial | east=14.7819042; north=49.9090492; name=BART, Fričova 242, 251 65 Ondřejov, Txèquia | es_ES |
dc.coverage.spatial | east=-69.45; north=-35.1666667; name=FRAM, Malargüe, Província de Mendoza, Argentina | es_ES |
dc.coverage.spatial | east=-68.1666667; north=-22.95; name=Pi of the Sky 1, San Pedro de Atacama, Antofagasta, Xile | es_ES |
dc.coverage.spatial | east=-6.7333333; north=37.1; name=Pi of the Sky 2, Moguer, Huelva, Espanya | es_ES |
dc.coverage.spatial | east=26; north=-29; name=WATCHER, Mangaung, Sud-àfrica | es_ES |
dc.coverage.spatial | east=-3.75; north=40.4166667; name=OM, Casa de Campo, Madrid, Espanya | es_ES |
dc.coverage.spatial | east=-16.50949; north=28.298566; name=TAD, Güímar, Santa Cruz de Tenerife, Espanya | es_ES |
dc.coverage.spatial | east=14.781417846679688; north=49.90918083723351; name=D50, Ondřejov, Txèquia | es_ES |
dc.coverage.spatial | east=41.43235; north=43.65722; name=TORTORA, Karatxai-Txerkèssia, Rússia, 369167 | es_ES |
dc.coverage.spatial | east=-70.7316; north=-29.2612; name=REM, La Higuera, Coquimbo, Xile | es_ES |
dc.date.accessioned | 2020-05-14T13:41:45Z | |
dc.date.available | 2020-05-14T13:41:45Z | |
dc.date.issued | 2018-06-22 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143254 | |
dc.description.abstract | [EN] This paper proposes the design and development of a telescope network scheduler for the GLORIA telescope network. This telescope network, which main objective is helping users to get involved in astronomy research, is composed by 18 heterogeneous telescopes located in different countries. These telescopes are managed by the scheduler to execute the observations requested by the users. A key module of this scheduler is the telescope decision algorithm which objective is to avoid serving an observation to a telescope that cannot execute it. This paper proposes two different algorithms: the first one is based on weather forecast, and the other one is based on fuzzy logic. Both algorithms were deployed and used into the GLORIA network, an analysis of the results and a performance comparative between both algorithm are shown in this paper. As well, the scheduler architecture based on a hybrid distributed-centralised schema is detailed. | es_ES |
dc.description.abstract | [ES] Este artículo propone el diseño y desarrollo de un planificador para la red de telescopios GLORIA. Esta red, cuyo principal objetivo es acercar los ciudadanos a la astronomía, está formada por 18 telescopios ubicados en cuatro continentes. Parte de la gestión de esta red se lleva a cabo por el planificador, que se encarga de recibir peticiones de observación de usuarios de usuarios y enviárselas a uno de los telescopios de la red. Para esto, necesita un algoritmo que decida el mejor telescopio, evitando ofrecer una petición a un telescopio que finalmente no pueda ejecutarla. Este artículo presenta dos algoritmos de decisión: el primero se basa únicamente en la predicción meteorológica, y el segundo emplea lógica difusa e información de cada telescopio. Ambos algoritmos fueron implantados en la red GLORIA. Los resultados obtenidos, así como una comparativa del rendimiento de ambos se presenta en este artículo. Así mismo, se detalla la arquitectura del planificador basada en una estructura híbrida distribuida-centralizada. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado parcialmente gracias al proyecto GLORIA. GLObal Robotic telescopes Intelligent Array for e-Science (GLORIA) es un proyecto financiado por la Unión Europea bajo el Séptimo Programa Marco (FP7/2007-2012) bajo la concesión número 283783. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Network | es_ES |
dc.subject | Telescopes | es_ES |
dc.subject | Scheduling algorithms | es_ES |
dc.subject | Fuzzy logic | es_ES |
dc.subject | Software | es_ES |
dc.subject | Red | es_ES |
dc.subject | Telescopios | es_ES |
dc.subject | Algoritmos de planificación | es_ES |
dc.subject | Lógica difusa | es_ES |
dc.title | GlSch: Planificación de Observaciones en la red de Telescopios GLORIA | es_ES |
dc.title.alternative | GlSch: Observation plan scheduler for the GLORIA telescope network | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2018.8640 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/283783/EU/GLObal Robotic telescopes Intelligent Array for e-Science/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | López Casado, C.; Pérez Del Pulgar Mancebo, CJ.; Muñoz Martínez, VF.; Castro Tirado, A. (2018). GlSch: Planificación de Observaciones en la red de Telescopios GLORIA. Revista Iberoamericana de Automática e Informática industrial. 15(3):339-350. https://doi.org/10.4995/riai.2018.8640 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2018.8640 | es_ES |
dc.description.upvformatpinicio | 339 | es_ES |
dc.description.upvformatpfin | 350 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8640 | es_ES |
dc.description.references | Andújar Márquez, J., Mateo Sanguino, T., 1 2010. Diseño de Laboratorios Virtuales y/o Remotos. Un Caso Práctico. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (1), 64-72. DOI:10.1016/S1697-7912(10)70009-1 | es_ES |
dc.description.references | Arregui, J. P., Tejo, J. A., Linares López, C., Borrajo, D., 2012. Steps towards and operational sensor network planning for space surveillance. In: Proceedings of the SpaceOps. DOI:10.2514/6.2012-1294728 | es_ES |
dc.description.references | Bakos, G., Gaspar, 2016. Finding and Characterizing a Large and Diverse Population of Transiting Exoplanets with HATSouth in Support of NASA Space Missions. NASA Proposal #16-XRP16-70. | es_ES |
dc.description.references | Beskin, G., Bad'in, V., Biryukov, A., et al., 7 2005. FAVOR (FAst Variability Optical Registration) - A Two-telescope Complex for Detection and Investigation of Short Optical Transients. Il Nuovo Cimento, 751-754. DOI:10.1393/ncc/i2005-10146-9 | es_ES |
dc.description.references | Bigongiari, C., Consortium, C., 2016. The Cherenkov Telescope Array. Nuclear and Particle Physics Proceedings 279, 174-181. DOI:10.1016/j.nuclphysbps.2016.10.025 | es_ES |
dc.description.references | Boër, M., Klotz, A., Laugier, R., et al., 2017. TAROT: a network for space surveillance and tracking operations. 7th European Conference on Space Debris ESA/ESOC. | es_ES |
dc.description.references | Castro-Tirado, A. J., Jelínek, M., Gorosabel, J., et al., 2012. Building the BOOTES world-wide Network of Robotic telescopes. Astronomical Society of India Conference Series, Vol. 7, 2012, p. 313-320 7, 313-320. | es_ES |
dc.description.references | Castro-Tirado, A. J., Sánchez Moreno, F. M., Pérez del Pulgar, C., et al., 2014.The GLObal Robotic telescopes Intelligent Array for E-Science (GLORIA). Revista Mexicana de Astronomía y Astrofísica 45, 104-109. | es_ES |
dc.description.references | Castro-Tirado, A. J., Soldán, J., Bernas, M., et al., 9 1999. The Burst Observerand Optical Transient Exploring System (BOOTES). Astronomy and Astrophysics Supplement Series 138 (3), 583-585. DOI:10.1051/aas:1999362 | es_ES |
dc.description.references | Delgado, F., Reuter, M. A., 7 2016. The LSST Scheduler from design to construction. SPIE Astronomical Telescopes+ Instrumentation, 991013.DOI:10.1117/12.2233630 | es_ES |
dc.description.references | Denny, R., 2011. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System. In: Telescopes from Afar Conference. p. 47. | es_ES |
dc.description.references | Ducci, L., Covino, S., Doroshenko, V., Mereghetti, S., Santangelo, A., Sasa-ki, M., 11 2016. Optical and near-infrared photometric monitoring of the transient X-ray binary A0538 with REM. Astronomy and Astrophysics 595,A103. DOI:10.1051/0004-6361/201629236 | es_ES |
dc.description.references | Falomo, R., Fantinel, D., Uslenghi, M., 9 2011. AETC: Advanced Exposure Time Calculator. In: Tescher, A. G. (Ed.), Applications of Digital Image Processing XXXIV. International Society for Optics and Photonics, pp.813523-. DOI:10.1117/12.913304 | es_ES |
dc.description.references | Gresham, K. C., Palma, C., Polsgrove, D. E., Chun, F. K., Della-Rose, D. J.,Tippets, R. D., 2016. Education and outreach using the falcon telescope network. Acta Astronautica 129, 130-134. DOI:10.1016/j.actaastro.2016.09.006 | es_ES |
dc.description.references | Hamuy, M., Pignata, G., Maza, J., et al., 2012. The CHilean Automatic Supernova sEarch. Memorie della Societa Astronomica Italiana 83, 388-392. | es_ES |
dc.description.references | Jelínek, M., Castro-Tirado, A. J., Cunnie, R., et al., 2016. A decade of GRB follow-up by BOOTES in Spain (2003-2013). Advances in Astronomy. | es_ES |
dc.description.references | Karpov, S., Beskin, G., Biryukov, A., et al., 2016. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation. IV Workshop on Robotic Autonomous Observatories (Eds. María Dolores Caballero-García, Shasi B. Pandey, David Hiriart & AlbertoJ. Castro-Tirado) Revista Mexicana de Astronomía y Astroísica (Serie de Conferencias) Vol. 48, pp. 91-96 (2016) 48, 91-96. | es_ES |
dc.description.references | Kubánek, P., 7 2016. Status, upgrades, and advances of RTS2: the open source astronomical observatory manager. In: Chiozzi, G., Guzman, J. C. (Eds.),SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99132U.DOI:10.1117/12.2232555 | es_ES |
dc.description.references | Lampoudi, S., Saunders, E., Eastman, J., 2015. An integer linear programming solution to the telescope network scheduling problem. In: International Conference on Operations Research and Enterprise Systems. | es_ES |
dc.description.references | Mankiewicz, L., Batsch, T., Castro-Tirado, A., et al., 2014. Pi of the Sky full system and the new telescope. III Workshop on Robotic Autonomous Observatories (Eds. Juan C. Tello, Alberto Riva, David Hiriart & Alberto J. Castro-Tirado) Revista Mexicana de Astronomía y Astrofísica (Serie de Conferenias) Vol. 45, pp. 7-11 (2014) 45, 7-11. | es_ES |
dc.description.references | myweather2, 2017. Free weather API - XML weather and JSON weather feed for global locations. URL:http://www.myweather2.com | es_ES |
dc.description.references | Nekola, M., Hudec, R., Jelínek, M., Kubánek, P., Štrobl, J., Polášek, C., 2010. BART: The Czech Autonomous Observatory. Advances in Astronomy 2010,1-5. DOI:10.1155/2010/103986 | es_ES |
dc.description.references | Ocaña, F., Ibarra, A., Racero, E., Montero, A., Doubek, J., Ruiz, V., 7 2016. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning. In: Hall, H. J., Gilmozzi, R., Marshall, H. K. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 990666. DOI:10.1117/12.2233142 | es_ES |
dc.description.references | Ottinger, J., Linwood, J., Minter, D., 2014. Beginning Hibernate 3rd, 3rd Edition. Apress Berkely, CA, USA. | es_ES |
dc.description.references | Panetta, M. P., 2016. The EEE Project: An extended network of muon telescopes for the study of cosmic rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824, 642-643. DOI:10.1016/j.nima.2015.10.073 | es_ES |
dc.description.references | Pickles, A., Hjelstrom, A., Boroson, T., et al., 8 2014. LCOGT network observatory operations. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 914912. DOI:10.1117/12.2055215 | es_ES |
dc.description.references | Racero, E., Ocaña, F., Ponz, D., 2015. Towards an autonomous telescope system: the Test-Bed Telescope project. Highlights of Spanish Astrophysics, 828-833. | es_ES |
dc.description.references | Saunders, E. S., Lampoudi, S., Lister, T. A., Norbury, M., Walker, Z., 8 2014. Novel scheduling approaches in the era of multi-telescope networks. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 91490E. DOI:10.1117/12.2056642Sky-Map, 2017. | es_ES |
dc.description.references | Sky-Map. URL:http://www.sky-map.org/ | es_ES |
dc.description.references | Solar, M., Michelon, P., Avarias, J., Garces, M., 2016. A scheduling model forastronomy. Astronomy and Computing 15, 90-104. DOI:10.1016/j.ascom.2016.02.005 | es_ES |
dc.description.references | Sosnowska, D., Ouadahi, A., Buchschacher, N., Weber, L., Pepe, F., 2014.Using Heuristic Algorithms to Optimize Observing Target Sequences. In: Astronomical Data Analysis Software and Systems XXIII. Vol. 485. p. 73. | es_ES |
dc.description.references | Trillas, E., Eciolaza, L., 2015. Fuzzy Logic. Springer International Publishing.DOI:10.1007/978-3-319-14203-6 | es_ES |
dc.description.references | Volgenau, N., Boroson, T., 7 2016. Two years of LCOGT operations: the challenges of a global observatory. In: Peck, A. B., Seaman, R. L., Benn, C. R.(Eds.), SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99101C. DOI:10.1117/12.2233830 | es_ES |
dc.description.references | Wang, F., Deng, H., Guo, L., Ji, K., 7 2010. A Survey on Scientific-Workflow Techniques for E-science in Astronomy. In: 2010 International Forum on In-formation Technology and Applications. IEEE, pp. 417-420. DOI:10.1109/IFITA.2010.210 | es_ES |
dc.description.references | Ye, Q.-Z., 2011. Forecasting Cloud Cover and Atmospheric Seeing for Astronomical Observing: Application and Evaluation of the Global Forecast System. Publications of the Astronomical Society of the Pacific 123, 113. | es_ES |
dc.description.references | Zimmer, P., McGraw, J., Ackermann, M., 2015. Real-Time Optical Surveillance of LEO/MEO with Small Telescopes. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 15-18, 2014, Ed.: S. Ryan, The Maui Economic Development Board, id.103. | es_ES |