- -

Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre

Show full item record

Martínez-Cagigal, V.; Hornero, R. (2017). Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre. Revista Iberoamericana de Automática e Informática industrial. 14(4):372-383. https://doi.org/10.1016/j.riai.2017.07.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143299

Files in this item

Item Metadata

Title: Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre
Secondary Title: P300-Based Brain-Computer Interface Channel Selection using Swarm Intelligence
Author: Martínez-Cagigal, V. Hornero, R.
Issued date:
Abstract:
[ES] Los sistemas Brain-Computer Interface (BCI) se definen como sistemas de comunicación que monitorizan la actividad cerebral y traducen determinadas características, correspondientes a las intenciones del usuario, en ...[+]


[EN] Brain-Computer Interfaces (BCI) are direct communication pathways between the brain and the environment that translate certain features, which correspond to users’ intentions, into device control commands. Channel ...[+]
Subjects: Interfaces , Machine learning , Biomedical systems , Optimization and computational methods , Electroencephalography , Communication systems , Aprendizaje automático , Sistemas biomédicos , Optimización y métodos computacionales , Electroencefalografía , Sistemas de comunicación
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2017.07.003
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2017.07.003
Project ID:
MINECO-FEDER/TEC2014-53196-R
JCYL/VA037U16
Thanks:
Este estudio se ha financiado parcialmente mediante el proyecto TEC2014-53196-R del Ministerio de Economía y Competitividad (MINECO) y FEDER, y el proyecto VA037U16 de la Consejería de Educación de la Junta de Castilla y ...[+]
Type: Artículo

References

Bhattacharjee, K. K., Sarmah, S. P., 2015. A binary firefly algorithm for knapsack problems. En: 2015 Int. Conf. Ind. Eng. Eng. Manag. pp. 73-77. DOI: 10.1109/IEEM.2015.7385611

Blankertz, B., Muller, K.-R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., Pfurtscheller ¨ , G., Millan, ' J. D. R., Schroder ¨ , M., Birbaumer, N., 2006. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2), 153-159. DOI: 10.1109/TNSRE.2006.875642

Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm intelligence: from natural to artificial systems. Oxford University Press. DOI: 10.1007/s13398-014-0173-7.2 [+]
Bhattacharjee, K. K., Sarmah, S. P., 2015. A binary firefly algorithm for knapsack problems. En: 2015 Int. Conf. Ind. Eng. Eng. Manag. pp. 73-77. DOI: 10.1109/IEEM.2015.7385611

Blankertz, B., Muller, K.-R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., Pfurtscheller ¨ , G., Millan, ' J. D. R., Schroder ¨ , M., Birbaumer, N., 2006. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2), 153-159. DOI: 10.1109/TNSRE.2006.875642

Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm intelligence: from natural to artificial systems. Oxford University Press. DOI: 10.1007/s13398-014-0173-7.2

Brownlee, J., 2011. Clever Algorithms: Nature-Inspired Programming Recipes, 2nd Edition. DOI: 10.1017/CBO9781107415324.004

Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J., 2011. A robust sensor-selection method for P300 brain-computer interfaces. J. Neural Eng. 8 (1), 016001. DOI: 10.1088/1741-2560/8/1/016001

Clerc, M., Kennedy, J., 2002. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 6 (1), 58-73. DOI: 10.1109/4235.985692

Colwell, K. A., Ryan, D. B., Throckmorton, C. S., Sellers, E. W., Collins, L. M., 2014. Channel selection methods for the P300 Speller. J. Neurosci. Methods 232, 6-15. DOI: 10.1016/j.jneumeth.2014.04.009

Dorigo, M., Di Caro, G., 1999. The Ant Colony Optimization Meta-Heuristic. New Ideas Optim. 2, 11-32. DOI: 10.1109/CEC.1999.782657

Dorigo, M., Stutzle, ¨ T., 2004. Ant Colony Optimization. The MIT press.

Farwell, L. A., Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70 (6), 510-523. DOI: 10.1016/0013-4694(88)90149-6

Gonzalez, A., Nambu, I., Hokari, H., Iwahashi, M., Wada, Y., 2013. Towards the classification of single-trial event-related potentials using adapted wavelets and particle swarm optimization. Proc. - 2013 IEEE Int. Conf. Syst. Man, Cybern. SMC 2013, 3089-3094. DOI: 10.1109/SMC.2013.527

Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3 (3), 1157-1182. DOI: 10.1016/j.aca.2011.07.027

Jin, J., Allison, B. Z., Brunner, C., Wang, B., Wang, X., Zhang, J., Neuper, C., Pfurtscheller, G., 2010. P300 Chinese input system based on Bayesian LDA. Biomed. Tech. 55 (1), 5-18. DOI: 10.1515/BMT.2010.003

Jobson, J. D., 1991. Applied multivariate data analysis. Volume I: Regression and Experimental Design, 4th Edition. Vol. 1. Springer.

Karaboga, D., 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Tech. rep., Erciyes University.

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42 (1), 21-57. DOI: 10.1007/s10462-012-9328-0

Kee, C.-Y., Ponnambalam, S., Loo, C.-K., 2015. Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161, 120-131. DOI: 10.1016/j.neucom.2015.02.057

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE Int. Conf. 4, 1942-1948 vol.4. DOI: 10.1109/ICNN.1995.488968

Kennedy, J., Eberhart, R., 1997. A Discrete Binary Version of the Particle Swarm Algorithm. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul. 5, 4-8. DOI: 10.1109/ICSMC.1997.637339

Kennedy, J., Eberhart, R. C., Shi, Y., 2001. Swarm Intelligence. Vol. 2. Academic Press. DOI: 10.4249/scholarpedia.1462

Kiran, M. S., 2015. The continuous artificial bee colony algorithm for binary optimization. Appl. Soft Comput. J. 33, 15-23. DOI: 10.1016/j.asoc.2015.04.007

Konak, A., Coit, D. W., Smith, A. E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91 (9), 992-1007. DOI: 10.1016/j.ress.2005.11.018

Kong, M., Tian, P., Kao, Y., 2008. A new ant colony optimization algorithm for the multidimensional Knapsack problem. Comput. Oper. Res. 35 (8), 2672- 2683. DOI: 10.1016/j.cor.2006.12.029

Kruger, T. J., Davidovic, T., Teodorovi ' c, D., ' Selmi ˇ c, M., 2016. The bee colony ' optimization algorithm and its convergence. Int. J. Bio-Inspired Comput. 8 (5), 340-354.

Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J., 2008. Toward enhanced P300 speller performance. J. Neurosci. Methods 167 (1), 15-21. DOI: 10.1016/j.jneumeth.2007.07.017

Kubler, A., Birbaumer, N., 2008. Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119 (11), 2658-2666. DOI: 10.1016/j.clinph.2008.06.019

Kubler, A., Nijboer, F., Birbaumer, N., 2007. Brain-Computer Interfaces for communication and motor control - perspectives on clinical application. En: Toward Brain-Computer Interfacing, 1st Edition. MA: The MIT Press, pp. 373-391.

Martínez-Cagigal, V., Gomez-Pilar, J., Alvarez, D., Hornero, R., 2016. ' An asynchronous P300-based brain-computer interface web browser for severely disabled people. IEEE Transactions on Neural Systems and Rehabilitation Engineering (Aceptado). DOI: 10.1109/TNSRE.2016.2623381

Perseh, B., Sharafat, A. R., jun 2012. An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection. J. Med. Signals Sens. 2 (3), 128-143.

Pham, D. T., Ghanbarzadeh, A., Koc¸, E., Otri, S., Rahim, S., Zaidi, M., 2006. The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Intell. Prod. Mach. Syst. - 2nd I*PROMS Virtual Int. Conf., 454-459. DOI: 10.1016/B978-008045157-2/50081-X

Rakotomamonjy, A., Guigue, V., 2008. BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomed. Eng. 55 (3), 1147-1154.

Rivet, B., Cecotti, H., Maby, E., Mattout, J., 2012. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface. Brain Topogr. 25 (1), 55-63. DOI: 10.1007/s10548-011-0193-y

Rivet, B., Cecotti, H., Phlypo, R., Bertrand, O., Maby, E., Mattout, J., 2010. EEG sensor selection by sparse spatial filtering in P300 speller BrainComputer Interface. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC'10, 5379-5382. DOI: 10.1109/IEMBS.2010.5626485

Salvaris, M., Sepulveda, F., 2009. Visual modifications on the p300 speller bci paradigm. Journal of neural engineering 6 (4), 046011.

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., Wolpaw, J. R., 2004. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51 (6), 1034-1043. DOI: 10.1109/TBME.2004.827072

Witten, I. H., Frank, E., 2011. Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition. Morgan Kaufmann.

Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., Vaughan, T. M., 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8 (2), 164-173. DOI: 10.1109/TRE.2000.847807

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., Vaughan, T. M., 2002. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113 (6), 767-91. DOI: 10.1016/S1388-2457(02)00057-3

Xu, M., Qi, H., Ma, L., Sun, C., Zhang, L., Wan, B., Yin, T., Ming, D., 2013. Channel Selection Based on Phase Measurement in P300-Based Brain-Computer Interface. PLoS One 8 (4), 1-9. DOI: 10.1371/journal.pone.0060608

Yang, X. S., 2009. Firefly Algorithms for Multimodal Optimization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5792 LNCS, 169-178. DOI: 10.1007/978-3-642-04944-6 14

Yang, X.-S., 2014. Nature-Inspired Optimization Algorithms, 1st Edition. Elsevier Inc.

Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., Karamanoglu, M., 2013. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, 1st Edition. Elsevier Inc. DOI: 10.1016/B978-0-12-405163-8.00020-X

Yu, T., Yu, Z., Gu, Z., Li, Y., 2015. Grouped Automatic Relevance Determination and Its Application in Channel Selection for P300 BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 23 (6), 1068-1077. DOI: 10.1109/TNSRE.2015.2413943

[-]

This item appears in the following Collection(s)

Show full item record