- -

Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Botelho, Thomaz R. es_ES
dc.contributor.author Soprani, Douglas es_ES
dc.contributor.author Rodrigues, Camila es_ES
dc.contributor.author Ferreira, André es_ES
dc.contributor.author Frizera, Anselmo es_ES
dc.date.accessioned 2020-05-14T18:24:19Z
dc.date.available 2020-05-14T18:24:19Z
dc.date.issued 2017-11-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143300
dc.description.abstract [ES] Los avances en robótica de rehabilitación están beneficiando en gran medida a los pacientes con discapacidad física. Los dispositivos de asistencia y rehabilitación pueden basar su funcionamiento en información fisiológica de los músculos y del cerebro a través de electromiografía (EMG) y electroencefalografía (EEG), para detectar la intención de movimiento de los usuarios. En este trabajo se presenta una propuesta de interfaz multimodal para la adquisición, sincronización y procesamiento de señales EEG y de sensores inerciales, para ser aplicada en tareas de rehabilitación con exoesqueletos robóticos. Se realizaron experimentos con individuos sanos con el objetivo de analizar la intención de movimiento, la activación muscular e inicio de movimiento durante los movimientos de extensión de la rodilla. Esta propuesta es un nuevo enfoque para la clasificación de señales EEG usando un clasificador bayesiano tomando en cuenta la varianza de la diferencia entre las clases usadas. El aporte de este trabajo se sustenta con los resultados que muestran un incremento del 30% en la precisión de clasificación con señales EEG en comparación con los enfoques tradicionales de clasificación, en un análisis off-line para el reconocimiento de la intención de movimiento de los miembros inferiores. es_ES
dc.description.abstract [EN] Patients with physical disabilities can benefit from robotic rehabilitation. This improves the efficiency of recovery and, therefore, the rehabilitation of the patient. Assistive and rehabilitation devices can make use of physiological data, such as electromyography (EMG) and electroencephalography (EEG), in order to detect movement intentions. This work presents a multimodal interface for signal acquisition, synchronization and processing of EEG and inertial sensors signals, to be applied in rehabilitation robotic exoskeletons. Experiments were performed with healthy individuals executing knee extension. The goal is to analyze movement intention, muscle activation and movement onset. It was proposed a new approach to the EEG signals classification using a Bayesian classifier taking into account the variance of the difference between the classes used. This contribution presents an average improvement of about 30% in the EEG classification accuracy in comparison to the traditional classifier approach. In this work an offline analysis was conducted.  es_ES
dc.description.sponsorship Los autores desean agradecer a CNPq (308529/2013-8), CAPES (88887.095626/2015-01) y FAPES (67566480 y 72982608) por dar soporte a esta investigación. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Human-machine interface es_ES
dc.subject Signal analysis es_ES
dc.subject Biomedical systems es_ES
dc.subject Inertial measurement units es_ES
dc.subject Human brain es_ES
dc.subject Movement es_ES
dc.subject Interfaz hombre-máquina es_ES
dc.subject Análisis de señales es_ES
dc.subject Sistemas biomédicos es_ES
dc.subject Unidades de medición inercial es_ES
dc.subject Cerebro humano es_ES
dc.subject Movimiento es_ES
dc.title Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano es_ES
dc.title.alternative New Approach to the EEG Signals Classification using the Variance of the Difference between the Classes of a Bayesian Classifier es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.07.002
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//308529%2F2013-8/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPES//72982608/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPES//67566480/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//88887.095626%2F2015-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Botelho, TR.; Soprani, D.; Rodrigues, C.; Ferreira, A.; Frizera, A. (2017). Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano. Revista Iberoamericana de Automática e Informática industrial. 14(4):362-371. https://doi.org/10.1016/j.riai.2017.07.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.07.002 es_ES
dc.description.upvformatpinicio 362 es_ES
dc.description.upvformatpfin 371 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9182 es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brasil es_ES
dc.description.references Ada, L., Dean, C. M., Vargas, J., Ennis, S., 2010. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: A systematic review. Journal of Physiotherapy 56 (3), 153-161. DOI: 10.1016/S1836-9553(10)70020-5 es_ES
dc.description.references Arnold, P., Bautmans, I., 2014. The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Experimental Gerontology 58, 58-68. DOI: 10.1016/j.exger.2014.07.012 es_ES
dc.description.references Benevides, A. B., Bastos Filho, T. F., Sarcinelli Filho, M., 2008. Mental Task Recognition Based on EEG for Commanding a Robotic Wheelchair. In: 3rd Applied Robotics and Collaborative Systems Engineering (Robocontrol 08). p. 8. es_ES
dc.description.references Bertrand, O., Perrin, F., Pernier, J., 1985. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalography and clinical neurophysiology 62 (6), 462-464. DOI: 10.1016/0168-5597(85)90058-9 es_ES
dc.description.references Botelho, T., Soprani, D., Schneider, P., Carvalho, C., Vargas, L., Frizera, A., 2015. Uma Proposta De Protocolo De Colocaçao De Sensores Inerciais Utilizando Alinhamento Virtual Para Aplicaçoes Em Análise De Movimento De Membros Inferiores. In: Anais do V Encontro Nacional de Engenharia Biomecânica ENEBI 2015. Uberlandia, Brasil, pp. 511-515. es_ES
dc.description.references Cheng, M., Jia, W., Gao, X., Gao, S., Yang, F., 2004. Mu rhythm-based cursor control: An offline analysis. Clinical Neurophysiology 115 (4), 745-751. DOI: 10.1016/j.clinph.2003.11.038 es_ES
dc.description.references Gallego, J. A., ' Iba'nez, J., Dideriksen, ˜ J. L., Serrano, J. I., del Castillo, M. D., Farina, D., Rocon, E., 2012. A multimodal human-robot interface to drive a neuroprosthesis for tremor management. IEEE Transactions on Systems, Man, and Cybernetics 42 (6), 1159-1168. es_ES
dc.description.references Gourab, K., Schmit, B. D., 2010. Changes in movement-related u-band EEG signals in human spinal cord injury. Clinical Neurophysiology 121 (12), 2017-2023. DOI: 10.1016/j.clinph.2010.05.012 es_ES
dc.description.references Guger, C., Vaughan, T., Allison, B., 2014. Brain-Computer Interface Research: A State-of-the-Art Summary 3. SpringerBriefs in Electrical and Computer Engineering. Springer International Publishing. DOI: 10.1007/978-3-319-09979-8 es_ES
dc.description.references Guyton, A. C., Hall, J. E., 2006. Textbook of medical physiology, 11th Edition. Elsevier Saunders, Philadelphia. es_ES
dc.description.references Hudgins, B., Parker, P., Scott, R. N., 1993. A New Strategy for Multifunction Myoelectric Control. IEEE Transactions on Biomedical Engineering 40 (1), 82-94. DOI: 10.1109/10.204774 es_ES
dc.description.references Husemann, B., Muller, F., Krewer, C., Heller, S., Koenig, E., 2007. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke 38 (2), 349-354. DOI: 10.1161/01.STR.0000254607.48765.cb es_ES
dc.description.references Ibañez, J., Serrano, J., del Castillo, M., Gallego, J., Rocon, E., nov 2013. Online detector of movement intention based on EEG-Application in tremor patients. Biomedical Signal Processing and Control 8 (6), 822-829. DOI: 10.1016/j.bspc.2013.07.006 es_ES
dc.description.references Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2015. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology 126 (1), 154- 159. DOI: 10.1016/j.clinph.2014.05.003 es_ES
dc.description.references Ju, M.-S., Lin, C.-C. K., Lin, D.-H., Hwang, I.-S., Chen, S.-M., sep 2005. A Rehabilitation Robot With Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 13 (3), 349-58. DOI: 10.1109/TNSRE.2005.847354 es_ES
dc.description.references Kirchner, E. A., Tabie, M., Seeland, A., jan 2014. Multimodal movement prediction - towards an individual assistance of patients. PloS one 9 (1), e85060. DOI: 10.1371/journal.pone.0085060 es_ES
dc.description.references Latikka, J. A., Hyttinen, J. A., Kuurne, T. A., Eskola, H. J., Malmivuo, J. A., 2001. The conductivity of brain tissues: Comparison of results in vivo and in vitro measurements. Annual Reports of the Research Reactor Institute, Kyoto University 1, 910-912. DOI: 10.1109/IEMBS.2001.1019092 es_ES
dc.description.references Lu, M.-K., Jung, P., Bliem, B., Shih, H.-T., Hseu, Y.-T., Yang, Y.-W., Ziemann, U., Tsai, C.-H., apr 2010. The Bereitschaftspotential in essential tremor. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 121 (4), 622-630. DOI: 10.1016/j.clinph.2009.12.014 es_ES
dc.description.references Mackay, J., Mensah, G., 2004. Global Burden of Stroke. In: The Atlas of Heart Disease and Stroke. World Health Organization, Ch. The Burden, pp. 50-51. es_ES
dc.description.references Mrachacz-Kersting, N., Kristensen, S. R., Niazi, I., Farina, D., apr 2012. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. The Journal of physiology 590 (Pt 7), 1669-82. DOI: 10.1113/jphysiol.2011.222851 es_ES
dc.description.references Mrachacz-Kersting, N., Stevenson, A. J. T., Aliakbaryhosseinabadi, S., Lundgaard, A. C., Jørgensen, H. R., Severinsen, K., Farina, D., 2017. An Associative Brain-Computer-Interface for Acute Stroke Patients. Springer International Publishing, Cham, pp. 841-845. DOI: 10.1007/978-3-319-46669-9 137 es_ES
dc.description.references Muller-Putz, ¨ G. R., Daly, I., Kaiser, V., 2014. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on braincomputer interface accuracy. Journal of neural engineering 11 (3), 035011. DOI: 10.1088/1741-2560/11/3/035011 es_ES
dc.description.references Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. F., Dremstrup, K., Farina, D., oct 2011. Detection of movement intention from single-trial movementrelated cortical potentials. Journal of Neural Engineering 8 (6), 066009. DOI: 10.1088/1741-2560/8/6/066009 es_ES
dc.description.references Pfurtscheller, G., Da Silva, F. L., nov 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 110 (11), 1842-57. es_ES
dc.description.references Shibasaki, H., Hallett, M., nov 2006. What is the Bereitschaftspotential? Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 117 (11), 2341-56. DOI: 10.1016/j.clinph.2006.04.025 es_ES
dc.description.references Strong, K., Mathers, C., Bonita, R., 2007. Preventing stroke: saving lives around the world. Lancet Neurology 6 (2), 182-187. DOI: 10.1016/S1474-4422(07)70031-5 es_ES
dc.description.references Tsukahara, A., Hasegawa, Y., Sankai, Y., jun 2009. Standing-up motion support for paraplegic patient with Robot Suit HAL. 2009 IEEE International Conference on Rehabilitation Robotics, 211-217. DOI: 10.1109/ICORR.2009.5209567 es_ES
dc.description.references Volkers, K. M., de Kieviet, J. F., Wittingen, H. P., Scherder, E. J. A., 2012. Lower limb muscle strength (LLMS): Why sedentary life should never start? A review. Archives of Gerontology and Geriatrics 54 (3), 399-414. DOI: 10.1016/j.archger.2011.04.018 es_ES
dc.description.references Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., Mackay-lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Otr, L., Stiers, W., Rp, A., 2016. AHA / ASA Guideline: Guidelines for Adult Stroke Rehabilitation and Recovery. DOI: 10.1161/STR.0000000000000098 es_ES
dc.description.references Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2014. Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Transactions on Biomedical Engineering 61 (2), 288-296. DOI: 10.1109/TBME.2013.2294203 es_ES
dc.description.references Xu, R., Jiang, N., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2016. Factors of influence on the performance of a short-latency non-invasive brain switch: Evidence in healthy individuals and implication for motor function rehabilitation. Frontiers in Neuroscience 9 (JAN), 1-9. DOI: 10.3389/fnins.2015.00527 es_ES
dc.description.references Yang, S., Kong, L., 2009. Research on characteristic extraction of human gait. 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, 2-5. DOI: 10.1109/ICBBE.2009.5163328 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem