Mostrar el registro sencillo del ítem
dc.contributor.author | Botelho, Thomaz R. | es_ES |
dc.contributor.author | Soprani, Douglas | es_ES |
dc.contributor.author | Rodrigues, Camila | es_ES |
dc.contributor.author | Ferreira, André | es_ES |
dc.contributor.author | Frizera, Anselmo | es_ES |
dc.date.accessioned | 2020-05-14T18:24:19Z | |
dc.date.available | 2020-05-14T18:24:19Z | |
dc.date.issued | 2017-11-08 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143300 | |
dc.description.abstract | [ES] Los avances en robótica de rehabilitación están beneficiando en gran medida a los pacientes con discapacidad física. Los dispositivos de asistencia y rehabilitación pueden basar su funcionamiento en información fisiológica de los músculos y del cerebro a través de electromiografía (EMG) y electroencefalografía (EEG), para detectar la intención de movimiento de los usuarios. En este trabajo se presenta una propuesta de interfaz multimodal para la adquisición, sincronización y procesamiento de señales EEG y de sensores inerciales, para ser aplicada en tareas de rehabilitación con exoesqueletos robóticos. Se realizaron experimentos con individuos sanos con el objetivo de analizar la intención de movimiento, la activación muscular e inicio de movimiento durante los movimientos de extensión de la rodilla. Esta propuesta es un nuevo enfoque para la clasificación de señales EEG usando un clasificador bayesiano tomando en cuenta la varianza de la diferencia entre las clases usadas. El aporte de este trabajo se sustenta con los resultados que muestran un incremento del 30% en la precisión de clasificación con señales EEG en comparación con los enfoques tradicionales de clasificación, en un análisis off-line para el reconocimiento de la intención de movimiento de los miembros inferiores. | es_ES |
dc.description.abstract | [EN] Patients with physical disabilities can benefit from robotic rehabilitation. This improves the efficiency of recovery and, therefore, the rehabilitation of the patient. Assistive and rehabilitation devices can make use of physiological data, such as electromyography (EMG) and electroencephalography (EEG), in order to detect movement intentions. This work presents a multimodal interface for signal acquisition, synchronization and processing of EEG and inertial sensors signals, to be applied in rehabilitation robotic exoskeletons. Experiments were performed with healthy individuals executing knee extension. The goal is to analyze movement intention, muscle activation and movement onset. It was proposed a new approach to the EEG signals classification using a Bayesian classifier taking into account the variance of the difference between the classes used. This contribution presents an average improvement of about 30% in the EEG classification accuracy in comparison to the traditional classifier approach. In this work an offline analysis was conducted. | es_ES |
dc.description.sponsorship | Los autores desean agradecer a CNPq (308529/2013-8), CAPES (88887.095626/2015-01) y FAPES (67566480 y 72982608) por dar soporte a esta investigación. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Human-machine interface | es_ES |
dc.subject | Signal analysis | es_ES |
dc.subject | Biomedical systems | es_ES |
dc.subject | Inertial measurement units | es_ES |
dc.subject | Human brain | es_ES |
dc.subject | Movement | es_ES |
dc.subject | Interfaz hombre-máquina | es_ES |
dc.subject | Análisis de señales | es_ES |
dc.subject | Sistemas biomédicos | es_ES |
dc.subject | Unidades de medición inercial | es_ES |
dc.subject | Cerebro humano | es_ES |
dc.subject | Movimiento | es_ES |
dc.title | Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano | es_ES |
dc.title.alternative | New Approach to the EEG Signals Classification using the Variance of the Difference between the Classes of a Bayesian Classifier | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2017.07.002 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//308529%2F2013-8/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPES//72982608/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPES//67566480/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//88887.095626%2F2015-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Botelho, TR.; Soprani, D.; Rodrigues, C.; Ferreira, A.; Frizera, A. (2017). Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano. Revista Iberoamericana de Automática e Informática industrial. 14(4):362-371. https://doi.org/10.1016/j.riai.2017.07.002 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2017.07.002 | es_ES |
dc.description.upvformatpinicio | 362 | es_ES |
dc.description.upvformatpfin | 371 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9182 | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brasil | es_ES |
dc.description.references | Ada, L., Dean, C. M., Vargas, J., Ennis, S., 2010. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: A systematic review. Journal of Physiotherapy 56 (3), 153-161. DOI: 10.1016/S1836-9553(10)70020-5 | es_ES |
dc.description.references | Arnold, P., Bautmans, I., 2014. The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Experimental Gerontology 58, 58-68. DOI: 10.1016/j.exger.2014.07.012 | es_ES |
dc.description.references | Benevides, A. B., Bastos Filho, T. F., Sarcinelli Filho, M., 2008. Mental Task Recognition Based on EEG for Commanding a Robotic Wheelchair. In: 3rd Applied Robotics and Collaborative Systems Engineering (Robocontrol 08). p. 8. | es_ES |
dc.description.references | Bertrand, O., Perrin, F., Pernier, J., 1985. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalography and clinical neurophysiology 62 (6), 462-464. DOI: 10.1016/0168-5597(85)90058-9 | es_ES |
dc.description.references | Botelho, T., Soprani, D., Schneider, P., Carvalho, C., Vargas, L., Frizera, A., 2015. Uma Proposta De Protocolo De Colocaçao De Sensores Inerciais Utilizando Alinhamento Virtual Para Aplicaçoes Em Análise De Movimento De Membros Inferiores. In: Anais do V Encontro Nacional de Engenharia Biomecânica ENEBI 2015. Uberlandia, Brasil, pp. 511-515. | es_ES |
dc.description.references | Cheng, M., Jia, W., Gao, X., Gao, S., Yang, F., 2004. Mu rhythm-based cursor control: An offline analysis. Clinical Neurophysiology 115 (4), 745-751. DOI: 10.1016/j.clinph.2003.11.038 | es_ES |
dc.description.references | Gallego, J. A., ' Iba'nez, J., Dideriksen, ˜ J. L., Serrano, J. I., del Castillo, M. D., Farina, D., Rocon, E., 2012. A multimodal human-robot interface to drive a neuroprosthesis for tremor management. IEEE Transactions on Systems, Man, and Cybernetics 42 (6), 1159-1168. | es_ES |
dc.description.references | Gourab, K., Schmit, B. D., 2010. Changes in movement-related u-band EEG signals in human spinal cord injury. Clinical Neurophysiology 121 (12), 2017-2023. DOI: 10.1016/j.clinph.2010.05.012 | es_ES |
dc.description.references | Guger, C., Vaughan, T., Allison, B., 2014. Brain-Computer Interface Research: A State-of-the-Art Summary 3. SpringerBriefs in Electrical and Computer Engineering. Springer International Publishing. DOI: 10.1007/978-3-319-09979-8 | es_ES |
dc.description.references | Guyton, A. C., Hall, J. E., 2006. Textbook of medical physiology, 11th Edition. Elsevier Saunders, Philadelphia. | es_ES |
dc.description.references | Hudgins, B., Parker, P., Scott, R. N., 1993. A New Strategy for Multifunction Myoelectric Control. IEEE Transactions on Biomedical Engineering 40 (1), 82-94. DOI: 10.1109/10.204774 | es_ES |
dc.description.references | Husemann, B., Muller, F., Krewer, C., Heller, S., Koenig, E., 2007. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke 38 (2), 349-354. DOI: 10.1161/01.STR.0000254607.48765.cb | es_ES |
dc.description.references | Ibañez, J., Serrano, J., del Castillo, M., Gallego, J., Rocon, E., nov 2013. Online detector of movement intention based on EEG-Application in tremor patients. Biomedical Signal Processing and Control 8 (6), 822-829. DOI: 10.1016/j.bspc.2013.07.006 | es_ES |
dc.description.references | Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2015. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology 126 (1), 154- 159. DOI: 10.1016/j.clinph.2014.05.003 | es_ES |
dc.description.references | Ju, M.-S., Lin, C.-C. K., Lin, D.-H., Hwang, I.-S., Chen, S.-M., sep 2005. A Rehabilitation Robot With Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 13 (3), 349-58. DOI: 10.1109/TNSRE.2005.847354 | es_ES |
dc.description.references | Kirchner, E. A., Tabie, M., Seeland, A., jan 2014. Multimodal movement prediction - towards an individual assistance of patients. PloS one 9 (1), e85060. DOI: 10.1371/journal.pone.0085060 | es_ES |
dc.description.references | Latikka, J. A., Hyttinen, J. A., Kuurne, T. A., Eskola, H. J., Malmivuo, J. A., 2001. The conductivity of brain tissues: Comparison of results in vivo and in vitro measurements. Annual Reports of the Research Reactor Institute, Kyoto University 1, 910-912. DOI: 10.1109/IEMBS.2001.1019092 | es_ES |
dc.description.references | Lu, M.-K., Jung, P., Bliem, B., Shih, H.-T., Hseu, Y.-T., Yang, Y.-W., Ziemann, U., Tsai, C.-H., apr 2010. The Bereitschaftspotential in essential tremor. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 121 (4), 622-630. DOI: 10.1016/j.clinph.2009.12.014 | es_ES |
dc.description.references | Mackay, J., Mensah, G., 2004. Global Burden of Stroke. In: The Atlas of Heart Disease and Stroke. World Health Organization, Ch. The Burden, pp. 50-51. | es_ES |
dc.description.references | Mrachacz-Kersting, N., Kristensen, S. R., Niazi, I., Farina, D., apr 2012. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. The Journal of physiology 590 (Pt 7), 1669-82. DOI: 10.1113/jphysiol.2011.222851 | es_ES |
dc.description.references | Mrachacz-Kersting, N., Stevenson, A. J. T., Aliakbaryhosseinabadi, S., Lundgaard, A. C., Jørgensen, H. R., Severinsen, K., Farina, D., 2017. An Associative Brain-Computer-Interface for Acute Stroke Patients. Springer International Publishing, Cham, pp. 841-845. DOI: 10.1007/978-3-319-46669-9 137 | es_ES |
dc.description.references | Muller-Putz, ¨ G. R., Daly, I., Kaiser, V., 2014. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on braincomputer interface accuracy. Journal of neural engineering 11 (3), 035011. DOI: 10.1088/1741-2560/11/3/035011 | es_ES |
dc.description.references | Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. F., Dremstrup, K., Farina, D., oct 2011. Detection of movement intention from single-trial movementrelated cortical potentials. Journal of Neural Engineering 8 (6), 066009. DOI: 10.1088/1741-2560/8/6/066009 | es_ES |
dc.description.references | Pfurtscheller, G., Da Silva, F. L., nov 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 110 (11), 1842-57. | es_ES |
dc.description.references | Shibasaki, H., Hallett, M., nov 2006. What is the Bereitschaftspotential? Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 117 (11), 2341-56. DOI: 10.1016/j.clinph.2006.04.025 | es_ES |
dc.description.references | Strong, K., Mathers, C., Bonita, R., 2007. Preventing stroke: saving lives around the world. Lancet Neurology 6 (2), 182-187. DOI: 10.1016/S1474-4422(07)70031-5 | es_ES |
dc.description.references | Tsukahara, A., Hasegawa, Y., Sankai, Y., jun 2009. Standing-up motion support for paraplegic patient with Robot Suit HAL. 2009 IEEE International Conference on Rehabilitation Robotics, 211-217. DOI: 10.1109/ICORR.2009.5209567 | es_ES |
dc.description.references | Volkers, K. M., de Kieviet, J. F., Wittingen, H. P., Scherder, E. J. A., 2012. Lower limb muscle strength (LLMS): Why sedentary life should never start? A review. Archives of Gerontology and Geriatrics 54 (3), 399-414. DOI: 10.1016/j.archger.2011.04.018 | es_ES |
dc.description.references | Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., Mackay-lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Otr, L., Stiers, W., Rp, A., 2016. AHA / ASA Guideline: Guidelines for Adult Stroke Rehabilitation and Recovery. DOI: 10.1161/STR.0000000000000098 | es_ES |
dc.description.references | Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2014. Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Transactions on Biomedical Engineering 61 (2), 288-296. DOI: 10.1109/TBME.2013.2294203 | es_ES |
dc.description.references | Xu, R., Jiang, N., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2016. Factors of influence on the performance of a short-latency non-invasive brain switch: Evidence in healthy individuals and implication for motor function rehabilitation. Frontiers in Neuroscience 9 (JAN), 1-9. DOI: 10.3389/fnins.2015.00527 | es_ES |
dc.description.references | Yang, S., Kong, L., 2009. Research on characteristic extraction of human gait. 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, 2-5. DOI: 10.1109/ICBBE.2009.5163328 | es_ES |