- -

Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortiz Colín, Eliher A. es_ES
dc.contributor.author Hernández González, Ilver H. es_ES
dc.contributor.author Rodríguez Rivas, Jaime J. es_ES
dc.contributor.author Carranza Castillo, Óscar es_ES
dc.contributor.author Ortega González, Rubén es_ES
dc.contributor.author Morales Caporal, Roberto es_ES
dc.date.accessioned 2020-05-14T18:28:01Z
dc.date.available 2020-05-14T18:28:01Z
dc.date.issued 2017-11-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143302
dc.description.abstract [EN] This paper presents the direct and easy way to implement digitally a Sünter-Clare modulation algorithm for a 7.5 KVA, three-wires, matrix converter. This modulation algorithm is used to calculate 3x3 matrix converter duty cycles to produce constant output voltage and frequency signals. The Sünter-Clare modulation algorithm recalculates switching patterns and switching times every sampling period in order to compensate the input voltage and frequency variations. This algorithm is defined in terms of the three-phase input and the output reference voltages at each sampling instant and is convenient for closed loop operations when the input voltage and frequency are variable in time as in the variable speed wind generation system. The experimental control setup is comprised of a field programmable gate array board, a digital signal processor and a graphics interface board. es_ES
dc.description.abstract [ES] En este trabajo se presenta la implementación digital del algoritmo de modulación de Sünter-Clare, para un convertidor matricial de tres hilos de 7.5 kVA. Este algoritmo es usado para calcular los ciclos de trabajo en un convertidor matricial 3x3, con lo que se generan tensiones de salida con amplitud y frecuencia constantes. El algoritmo de modulación de Sünter-Clare recalcula los tiempos y trayectorias de conmutación cada período de muestreo, con el objetivo de compensar las variaciones de amplitud y de frecuencia de las tensiones de entrada. Este algoritmo se ejecuta en cada muestreo y está en función de la tensión trifásica de entrada y de la tensión de referencia de salida, resultando adecuado para controles en lazo cerrado, cuando las señales de amplitud y de frecuencia de las tensiones de entrada son variables en el tiempo, como ocurre en los sistemas de generación de energía eléctrica a velocidad variable, que utilizan la energía del viento como fuente primaria de energía. El sistema de control para el trabajo experimental, además de la tarjeta del convertidor matricial, está compuesto por una tarjeta de arreglos de compuertas programable (FPGA) y por un procesador digital de señales (DSP) con una tarjeta de interfaz gráfica. es_ES
dc.description.sponsorship Los autores agradecen al Instituto Politécnico Nacional por el apoyo y en la financiación del proyecto que permitió la adquisición del equipamiento necesario para el laboratorio de Electrónica de Potencia y de Control de Máquinas Eléctricas. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Matrix converter es_ES
dc.subject Sünter-Clare modulation algorithm es_ES
dc.subject Total Harmonic Distortion es_ES
dc.subject Convertidor matricial es_ES
dc.subject Algoritmo de modulación Sünter-Clare es_ES
dc.subject Distorsión total armónica es_ES
dc.title Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3 es_ES
dc.title.alternative Sünter-Clare Algorithm Implementation in a 3x3 Matrix Converter. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.06.002
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ortiz Colín, EA.; Hernández González, IH.; Rodríguez Rivas, JJ.; Carranza Castillo, Ó.; Ortega González, R.; Morales Caporal, R. (2017). Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3. Revista Iberoamericana de Automática e Informática industrial. 14(4):446-454. https://doi.org/10.1016/j.riai.2017.06.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.06.002 es_ES
dc.description.upvformatpinicio 446 es_ES
dc.description.upvformatpfin 454 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9196 es_ES
dc.contributor.funder Instituto Politécnico Nacional, México es_ES
dc.description.references Altun, H., Sünter, S., 2003. Matrix converter induction motor drives: modeling, simulation and control. Journal of Electrical Eng., Vol. 86, No. 1, pp 25- 33. es_ES
dc.description.references Arevalo, S., Zanchetta, P., Wheeler, P.W., Trentin, A., Empringham, L., 2010. Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing. IEEE Trans. on Ind. Elect., Vol. 57, No. 6, pp. 2076-2084. es_ES
dc.description.references Barater, D., Buticchi, G., Concari, C., Concari, L., Franceschini, G., 2013. Single-phase matrix converter for active power filter applications. 39th Annual Conference of the IEEE Industrial Electronics Society (IECON'2013). es_ES
dc.description.references Burany, N., 1989. Safe control of four-quadrant switches. Industry Applications Society Annual Meeting, Vol. 1, pp. 1190-1194. es_ES
dc.description.references Bucknall, R.W.G., Ciaramella, K.M., 2010. On the conceptual design and performance of a matrix converter for marine electric propulsion. IEEE Trans. on Power Elect., Vol. 25, No. 6, pp. 1497-1508. es_ES
dc.description.references Chai, M., Xiao, D., Dutta, R., Fletcher, J.E., 2016. Space vector PWM techniques for three-to-five-phase indirect matrix converter in the overmodulation region. IEEE Trans. on Ind. Elect., Vol. 63, No. 1, pp. 550- 561. es_ES
dc.description.references Cardenas, R., Peña, R., Wheeler, P., Clare, J., Juri, C., 2014. Control of a matrix converter for the operation of autonomous systems. Renewable Energy, ELSEVIER, Vol. 43, pp. 343-353. es_ES
dc.description.references Casadei, D., Serra, G., Tani, A., Zarri, L., 2002. Matrix Converter Modulation Strategies: A new general approach based on space-vector representation of the switch state. IEEE Trans. on Ind. Elect., Vol. 49, No. 2, pp. 370-381. es_ES
dc.description.references Empringham, L., Wheeler, P.W., Clare, J.C., 1998. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques. 29th Annual IEEE Power Electronics Specialists Conference (PESC). Vol.1, pp. 707-713. es_ES
dc.description.references Guo, Y., Deng, W., Zhu, J., Blaabjerg, F., 2014. An Improved 4-step Commutation Method Application for Matrix Converter. 17th International Conference on Electrical Machines and Systems (ICEMS'2014). es_ES
dc.description.references Gupta, R.A., Kumar, R., Sangtani, V., 2014. Direct torque controlled matrix converter fed induction motor drive. 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 698-703. es_ES
dc.description.references Hongwu, S., Hua L., Xingwei W., Limin Y., 2009. Damped input filter design of matrix converter. International Conference on Power Electronics and Drive Systems (PEDS 2009), pp.672,677. es_ES
dc.description.references Huber, L., Borojevic, D., Burany, N., 1992. Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors. IEE Proceeding B: Electric Power Applications, Vol. 139, No. 2, pp.103-113. es_ES
dc.description.references Hyosung, K., Seung-Ki, S., 2009. Analysis on output LC filters for PWM inverters. IEEE 6th International Power Electronics and Motion Control Conference (IPEMC'2009), pp. 384-389. es_ES
dc.description.references Jayasinghe, S.D.G., Vilathgamuwa, D.M., 2011. A modular matrix converter for transformer-less PMSG wind generation system. 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), pp. 474-479. es_ES
dc.description.references Kolar, J.W., Baumann, M., Schafmeister, F., Ertl, H., 2002. Novel three-phase AC-DC-AC sparse matrix converter. The IEEE Seventeenth Annual Applied Power Electronics Conference and Exposition, (APEC), Vol. 2, pp. 777-791. es_ES
dc.description.references Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, 2009. Model predictive control, a simple and powerful method to control power converters. IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1826-1838. es_ES
dc.description.references Lee, M. Y., Wheeler, P., Klumpner, C., 2010. Space-vector modulated multilevel matrix converter. IEEE Trans. on Ind. Elect., Vol. 57, No. 10, pp. 3385-3394. es_ES
dc.description.references Lillo, de L., 2006. A matrix converter drive system for aircraft rudder electromechanical actuator. Ph. D. Thesis, University of Nottingham, England. es_ES
dc.description.references Nguyen, T. D., Lee, H.H., 2016. Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis. IEEE Trans. on Ind. Elect., Vol. 63, No. 1, pp. 13-24. es_ES
dc.description.references Oyama, J., Higuchi, T., Yamada, E., Koga, T. Lipo, T., 1989. New control strategy for matrix converter. 20th. Annual IEEE Power Elect. Specialist Conference, Vol. 1, pp. 360-367. es_ES
dc.description.references Pinto, S.F., Silva, J.F., 2001. Input filter design for sliding mode controlled matrix converters. 32 Annual Power Electronics Specialists Conference (PESC'2001), Vol. 2, pp. 648-653. es_ES
dc.description.references Prabhakar, K.K., Singh, A.K., Reddy, C.U., Kumar, P., 2014. Drive system for electric vehicle power train application using DC to AC matrix converter. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES' 2014). es_ES
dc.description.references Ratanapanachote, S., Cha, H.J. Enjeti, P.N., 2006. A digitally controlled switch mode power supply based on matrix converter. IEEE Trans. on Power Elect., Vol. 21, No. 1, pp. 124-130. es_ES
dc.description.references Reyes, E., Peña, R., Cárdenas, R., Clare, J., Wheeler, P., Gimenez, R.B., 2008. A topology for multiple generation system with doubly fed induction machines and indirect matrix converter. IEEE International Symposium on Industrial Electronics, pp. 2463-2468. es_ES
dc.description.references Robles, E.L., Rodríguez, J.J., Peralta, E., Carranza, O., 2015. Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads. Journal of Applied Research and Technology, Vol. 13, pp.510-522. es_ES
dc.description.references Rodriguez, J.J., Caporal, R.M., Peralta, E., Carranza, O., Ortega R., 2016. Optimal Venturini modulation for a three-phase four-wire matrix converter. IEEE Latin America Transactions, Vol. 14, No. 2. es_ES
dc.description.references Rodriguez, J., Rivera, M., Kolar, J.W., Wheeler, P.W., 2012. A review of control and modulation methods for Matrix Converters. IEEE Trans. on Ind. Elect., Vol. 59, No. 1, pp. 58-70. es_ES
dc.description.references Roy, G., April, G.E., 1989. Cycloconverter operation under a new scalar control algorithm. 20th Annual IEEE Power Electron. Spec. Conf., Vol. 1, pp. es_ES
dc.description.references Sun, K., Huang, L., Matsuse, K., 2007. An improved matrix converter fed induction motor vector control drive with output voltage error cancellation. Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, pp. 250-255. es_ES
dc.description.references Sun, Y., Xiong, W., Su, M., Li, X., Dan, H., Yang, J., 2016. Carrier-based modulation strategies for multimodular matrix converters. IEEE Trans. on Ind. Elect., Vol. 63, No. 3, pp. 1350-1361. es_ES
dc.description.references Vargas, R., Ammann, U., Hudoffsky, B., Rodriguez, J., Wheeler, P., 2010. Predictive torque control of an induction machine fed by a matrix converter with reactive input power control. IEEE Trans. on Power Electron., Vol. 25, No. 6, pp. 1426-1438. es_ES
dc.description.references Venturini, M., 1980. A new sine wave in sine wave out conversion technique which eliminate reactive elements. Seventh National Solid-State Power Conversion Conference (POWERCON 7), pp. E3_1-E3_5. es_ES
dc.description.references Wheeler, P.W., 1999. Matrix converters study final report. Chapter 1, University of Nottingham, School of Electrical and Electronic Engineering, England. es_ES
dc.description.references Wheeler, P.W., Rodríguez, J., Clare, J.C., Empringham, L., Weinstein, A., 2002. Matrix converters: a technology review. IEEE Trans. on Ind. Elect., Vol. 49, No. 2. es_ES
dc.description.references Wheeler, P.W., Clare, J.C., Apap, M., Empringham, L., Lilo, L. de Bradley, K., Whitley, C., Towers, G., 2004. An electro-hydrostatic aircraft actuator using a matrix converter permanent magnet motor drive. 2nd International Conference on Power Electronics, Machines and Drives, (PEMD), Vol. 2, pp. 464-468. es_ES
dc.description.references Yamasaki, M., Sakaki, K., Matsuse, K., 2012. Characteristics of vector control two induction motor drives fed by matrix converter. 15th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5. es_ES
dc.description.references Yoon, Y.D., Sul, S.K., 2006. Carrier-based modulation technique for matrix converter," IEEE Trans. on Power Elect., Vol. 21, No. 6, pp. 1691-1703. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem