- -

A versatile drug delivery system targeting senescent cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A versatile drug delivery system targeting senescent cells

Show full item record

Muñoz-Espín, D.; Rovira, M.; Galiana, I.; Giménez Morales, C.; Lozano-Torres, B.; Páez Ribes, M.; Llanos, S.... (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine. 10(9). https://doi.org/10.15252/emmm.201809355

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143327

Files in this item

Item Metadata

Title: A versatile drug delivery system targeting senescent cells
Author: Muñoz-Espín, Daniel Rovira, M. Galiana, Irene Giménez Morales, Cristina Lozano-Torres, Beatriz Páez Ribes, M. LLanos, Susana Chaib, Selim Muñoz-Martín, M. Ucero, Alvaro C. Garaulet, G. Mulero, F. Dann, S.G. VanArsdale, T. Shields, D.J. Bernardos Bau, Andrea Murguía, Jose R. Martínez-Máñez, Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal beta-galactosidase ...[+]
Subjects: Chemotherapy , Fibrosis , Nanomedicine , Palbociclib , Senescence
Copyrigths: Reconocimiento (by)
EMBO Molecular Medicine. (issn: 1757-4676 )
DOI: 10.15252/emmm.201809355
Publisher version: https://doi.org/10.15252/emmm.201809355
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
We are grateful to D. Megias, L. Martinez, O. Dominguez, F. Al-Shahrour, C. Fustero, O. Graria, G. Garnez-Lapez, A. De Martino, P. Gonzalez, M. Udriste for technical support. Work in the laboratory of R.M.-M was funded by ...[+]
Type: Artículo


Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Aoshiba, K., Tsuji, T., & Nagai, A. (2003). Bleomycin induces cellular senescence in alveolar epithelial cells. European Respiratory Journal, 22(3), 436-443. doi:10.1183/09031936.03.00011903

Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M., Semba, S., Yamaguchi, K., & Nakamura, H. (2013). Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Experimental and Toxicologic Pathology, 65(7-8), 1053-1062. doi:10.1016/j.etp.2013.04.001 [+]
Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Aoshiba, K., Tsuji, T., & Nagai, A. (2003). Bleomycin induces cellular senescence in alveolar epithelial cells. European Respiratory Journal, 22(3), 436-443. doi:10.1183/09031936.03.00011903

Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M., Semba, S., Yamaguchi, K., & Nakamura, H. (2013). Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Experimental and Toxicologic Pathology, 65(7-8), 1053-1062. doi:10.1016/j.etp.2013.04.001

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031

Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932

Barry, S. P., Davidson, S. M., & Townsend, P. A. (2008). Molecular regulation of cardiac hypertrophy. The International Journal of Biochemistry & Cell Biology, 40(10), 2023-2039. doi:10.1016/j.biocel.2008.02.020

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010

Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin Cardiomyopathy. Cardiology, 115(2), 155-162. doi:10.1159/000265166

Chiche, A., Le Roux, I., von Joest, M., Sakai, H., Aguín, S. B., Cazin, C., … Li, H. (2017). Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle. Cell Stem Cell, 20(3), 407-414.e4. doi:10.1016/j.stem.2016.11.020

Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472-477. doi:10.1126/science.aaf6659

Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116

Cho, J.-H., Saini, D. K., Karunarathne, W. K. A., Kalyanaraman, V., & Gautam, N. (2011). Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cellular Signalling, 23(5), 785-793. doi:10.1016/j.cellsig.2011.01.001

Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57. doi:10.1038/nrc2772

Demaria, M., Ohtani, N., Youssef, S. A., Rodier, F., Toussaint, W., Mitchell, J. R., … Campisi, J. (2014). An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 31(6), 722-733. doi:10.1016/j.devcel.2014.11.012

Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., … Campisi, J. (2016). Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 7(2), 165-176. doi:10.1158/2159-8290.cd-16-0241

Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363

Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727-741. doi:10.1016/s0006-2952(98)00307-4

Giefing, M., Zemke, N., Brauze, D., Kostrzewska-Poczekaj, M., Luczak, M., Szaumkessel, M., … Jarmuz, M. (2010). High resolution ArrayCGH and expression profiling identifies PTPRD and PCDH17/PCH68 as tumor suppressor gene candidates in laryngeal squamous cell carcinoma. Genes, Chromosomes and Cancer, 50(3), 154-166. doi:10.1002/gcc.20840

Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E., Krasnov, P., Virtuoso, L. P., … Gudkov, A. V. (2017). p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging, 9(8), 1867-1884. doi:10.18632/aging.101268

Hecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. (2014). Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 6(231), 231ra47-231ra47. doi:10.1126/scitranslmed.3008182

Hocine, O., Gary-Bobo, M., Brevet, D., Maynadier, M., Fontanel, S., Raehm, L., … Frochot, C. (2010). Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. International Journal of Pharmaceutics, 402(1-2), 221-230. doi:10.1016/j.ijpharm.2010.10.004

Ikediobi, O. N., Davies, H., Bignell, G., Edkins, S., Stevens, C., O’Meara, S., … Wooster, R. (2006). Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Molecular Cancer Therapeutics, 5(11), 2606-2612. doi:10.1158/1535-7163.mct-06-0433

Ivanov, A., Pawlikowski, J., Manoharan, I., van Tuyn, J., Nelson, D. M., Rai, T. S., … Adams, P. D. (2013). Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 202(1), 129-143. doi:10.1083/jcb.201212110

Kile, B. T. (2014). The role of apoptosis in megakaryocytes and platelets. British Journal of Haematology, 165(2), 217-226. doi:10.1111/bjh.12757

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., … Lowe, S. W. (2008). Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell, 134(4), 657-667. doi:10.1016/j.cell.2008.06.049

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25

Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatory responses: aging and cancer perspectives. Trends in Immunology, 36(4), 217-228. doi:10.1016/j.it.2015.02.009

Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., … Hwang, E. S. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5(2), 187-195. doi:10.1111/j.1474-9726.2006.00199.x

Li, W., Fan, J., Hochhauser, D., Banerjee, D., Zielinski, Z., Almasan, A., … Bertino, J. R. (1995). Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proceedings of the National Academy of Sciences, 92(22), 10436-10440. doi:10.1073/pnas.92.22.10436

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). doi:10.1186/s13059-014-0550-8

Massaro, R. R., Faião-Flores, F., Rebecca, V. W., Sandri, S., Alves-Fernandes, D. K., Pennacchi, P. C., … Maria-Engler, S. S. (2017). Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacological Research, 119, 242-250. doi:10.1016/j.phrs.2017.02.013

Mosteiro, L., Pantoja, C., Alcazar, N., Marión, R. M., Chondronasiou, D., Rovira, M., … Serrano, M. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 354(6315), aaf4445. doi:10.1126/science.aaf4445

Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., … Serrano, M. (2013). Programmed Cell Senescence during Mammalian Embryonic Development. Cell, 155(5), 1104-1118. doi:10.1016/j.cell.2013.10.019

Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823

Nair, J. B., Mohapatra, S., Ghosh, S., & Maiti, K. K. (2015). Novel lysosome targeted molecular transporter built on a guanidinium-poly-(propylene imine) hybrid dendron for efficient delivery of doxorubicin into cancer cells. Chemical Communications, 51(12), 2403-2406. doi:10.1039/c4cc09829c

Narita, M., Young, A. R. J., Arakawa, S., Samarajiwa, S. A., Nakashima, T., Yoshida, S., … Narita, M. (2011). Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science, 332(6032), 966-970. doi:10.1126/science.1205407

Pan, J., Li, D., Xu, Y., Zhang, J., Wang, Y., Chen, M., … Meng, A. (2017). Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. International Journal of Radiation Oncology*Biology*Physics, 99(2), 353-361. doi:10.1016/j.ijrobp.2017.02.216

Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J.-C., Des Rosiers, C., Zeller, M., … Vergely, C. (2011). Oxidative Stress and Myocardial Gene Alterations Associated with Doxorubicin-Induced Cardiotoxicity in Rats Persist for 2 Months after Treatment Cessation. Journal of Pharmacology and Experimental Therapeutics, 339(3), 807-814. doi:10.1124/jpet.111.185892

Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M. C., Morton, J. P., … Keyes, W. M. (2017). The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes & Development, 31(2), 172-183. doi:10.1101/gad.290635.116

Roos, C. M., Zhang, B., Palmer, A. K., Ogrodnik, M. B., Pirtskhalava, T., Thalji, N. M., … Miller, J. D. (2016). Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 15(5), 973-977. doi:10.1111/acel.12458

Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., … LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8(1). doi:10.1038/ncomms14532

Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397-408. doi:10.1038/nrc3960

Sheng, Y., Xu, J., You, Y., Xu, F., & Chen, Y. (2015). Acid-Sensitive Peptide-Conjugated Doxorubicin Mediates the Lysosomal Pathway of Apoptosis and Reverses Drug Resistance in Breast Cancer. Molecular Pharmaceutics, 12(7), 2217-2228. doi:10.1021/mp500386y

Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943

Slowing, I. I., Vivero-Escoto, J. L., Zhao, Y., Kandel, K., Peeraphatdit, C., Trewyn, B. G., & Lin, V. S.-Y. (2011). Exocytosis of Mesoporous Silica Nanoparticles from Mammalian Cells: From Asymmetric Cell-to-Cell Transfer to Protein Harvesting. Small, 7(11), 1526-1532. doi:10.1002/smll.201002077

Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004

Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M. C., Di Giacomo, V., … Keyes, W. M. (2013). Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell, 155(5), 1119-1130. doi:10.1016/j.cell.2013.10.041

Tai, H., Wang, Z., Gong, H., Han, X., Zhou, J., Wang, X., … Xiao, H. (2016). Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy, 13(1), 99-113. doi:10.1080/15548627.2016.1247143

Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276u

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016

Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. W. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5). doi:10.1038/natrevmats.2016.14

Yanes, R. E., Tarn, D., Hwang, A. A., Ferris, D. P., Sherman, S. P., Thomas, C. R., … Tamanoi, F. (2012). Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small, 9(5), 697-704. doi:10.1002/smll.201201811

Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., … Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 7(1). doi:10.1038/ncomms11190

Yun, M. H., Davaapil, H., & Brockes, J. P. (2015). Recurrent turnover of senescent cells during regeneration of a complex structure. eLife, 4. doi:10.7554/elife.05505

Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344

Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445




This item appears in the following Collection(s)

Show full item record