Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz-Espín, Daniel | es_ES |
dc.contributor.author | Rovira, M. | es_ES |
dc.contributor.author | Galiana, Irene | es_ES |
dc.contributor.author | Giménez Morales, Cristina | es_ES |
dc.contributor.author | Lozano-Torres, Beatriz | es_ES |
dc.contributor.author | Páez Ribes, M. | es_ES |
dc.contributor.author | LLanos, Susana | es_ES |
dc.contributor.author | Chaib, Selim | es_ES |
dc.contributor.author | Muñoz-Martín, M. | es_ES |
dc.contributor.author | Ucero, Alvaro C. | es_ES |
dc.contributor.author | Garaulet, G. | es_ES |
dc.contributor.author | Mulero, F. | es_ES |
dc.contributor.author | Dann, S.G. | es_ES |
dc.contributor.author | VanArsdale, T. | es_ES |
dc.contributor.author | Shields, D.J. | es_ES |
dc.contributor.author | Bernardos Bau, Andrea | es_ES |
dc.contributor.author | Murguía, Jose R. | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2020-05-15T03:03:20Z | |
dc.date.available | 2020-05-15T03:03:20Z | |
dc.date.issued | 2018-09 | es_ES |
dc.identifier.issn | 1757-4676 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143327 | |
dc.description.abstract | [EN] Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal beta-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders. | es_ES |
dc.description.sponsorship | We are grateful to D. Megias, L. Martinez, O. Dominguez, F. Al-Shahrour, C. Fustero, O. Graria, G. Garnez-Lapez, A. De Martino, P. Gonzalez, M. Udriste for technical support. Work in the laboratory of R.M.-M was funded by Projects MAT2015-64139-C4-1-R, PROMETE011/2014/047, and by Institute de Salud Carlos III through the project "DTS16/00205" (Co-funded by European Regional Development Fund/European Social Fund "Investing in your future"). Work in the laboratory of M.S. was funded by the CNIO and the IRB, and by grants from the Spanish Ministry of Economy (MINECO, SAF), the European Research Council (ERC Advanced Grant), the Botin Foundation and Banco Santander (Santander Universities Global Division), and by "la Caixa" Foundation. CNIO and IRB Barcelona are recipients of a Severo Ochoa Award of Excellence from the MINECO. D.M.-E was holder of a "Ramon y Cajal" Programme Senior Grant (MINECO, RYC-2013-14471) and was funded by a National Programme for Research Aimed at the Challenges of Society (MINECO, BFU2014-60020-R). Work in the laboratory of D.M.-E. was funded by Cancer Research UK (CRUK, C9685/A25177), and by the CRUK Cambridge Centre Early Detection Programme (RG86786). M.R. was holder of a "la Caixa"-Severo Ochoa PhD scholarship. I.G., B.L.-T., and A.B. were funded by the Generalitat Valenciana and the MINECO. Part of this work has been funded by a research collaboration agreement between Pfizer Inc. and the laboratories of RM.-M. and M.S. The fenders had no role in data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | EMBO | es_ES |
dc.relation.ispartof | EMBO Molecular Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Chemotherapy | es_ES |
dc.subject | Fibrosis | es_ES |
dc.subject | Nanomedicine | es_ES |
dc.subject | Palbociclib | es_ES |
dc.subject | Senescence | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | A versatile drug delivery system targeting senescent cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.15252/emmm.201809355 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2013-14471/ES/RYC-2013-14471/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2014-60020-R/ES/LA SENESCENCIA CELULAR COMO COMPONENTE ACTIVO EN LA REMODELACION DE TEJIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CRUK//C9685%2FA25177/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DTS16%2F00205/ES/NANODISPOSITIVOS INTELIGENTES DIRIGIDOS A CÉLULAS SENESCENTES: NANO-SEN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Muñoz-Espín, D.; Rovira, M.; Galiana, I.; Giménez Morales, C.; Lozano-Torres, B.; Páez Ribes, M.; Llanos, S.... (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine. 10(9). https://doi.org/10.15252/emmm.201809355 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.15252/emmm.201809355 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 30012580 | es_ES |
dc.identifier.pmcid | PMC6127887 | es_ES |
dc.relation.pasarela | S\367864 | es_ES |
dc.contributor.funder | Pfizer | es_ES |
dc.contributor.funder | Fundación Botín | es_ES |
dc.contributor.funder | Cancer Research, Reino Unido | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Santander Universidades | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia y Tecnología | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Institute for Research in Biomedicine, España | es_ES |
dc.contributor.funder | Centro Nacional de Investigaciones Oncológicas | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Aoshiba, K., Tsuji, T., & Nagai, A. (2003). Bleomycin induces cellular senescence in alveolar epithelial cells. European Respiratory Journal, 22(3), 436-443. doi:10.1183/09031936.03.00011903 | es_ES |
dc.description.references | Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M., Semba, S., Yamaguchi, K., & Nakamura, H. (2013). Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Experimental and Toxicologic Pathology, 65(7-8), 1053-1062. doi:10.1016/j.etp.2013.04.001 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031 | es_ES |
dc.description.references | Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932 | es_ES |
dc.description.references | Barry, S. P., Davidson, S. M., & Townsend, P. A. (2008). Molecular regulation of cardiac hypertrophy. The International Journal of Biochemistry & Cell Biology, 40(10), 2023-2039. doi:10.1016/j.biocel.2008.02.020 | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d | es_ES |
dc.description.references | Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010 | es_ES |
dc.description.references | Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin Cardiomyopathy. Cardiology, 115(2), 155-162. doi:10.1159/000265166 | es_ES |
dc.description.references | Chiche, A., Le Roux, I., von Joest, M., Sakai, H., Aguín, S. B., Cazin, C., … Li, H. (2017). Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle. Cell Stem Cell, 20(3), 407-414.e4. doi:10.1016/j.stem.2016.11.020 | es_ES |
dc.description.references | Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472-477. doi:10.1126/science.aaf6659 | es_ES |
dc.description.references | Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116 | es_ES |
dc.description.references | Cho, J.-H., Saini, D. K., Karunarathne, W. K. A., Kalyanaraman, V., & Gautam, N. (2011). Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cellular Signalling, 23(5), 785-793. doi:10.1016/j.cellsig.2011.01.001 | es_ES |
dc.description.references | Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57. doi:10.1038/nrc2772 | es_ES |
dc.description.references | Demaria, M., Ohtani, N., Youssef, S. A., Rodier, F., Toussaint, W., Mitchell, J. R., … Campisi, J. (2014). An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 31(6), 722-733. doi:10.1016/j.devcel.2014.11.012 | es_ES |
dc.description.references | Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., … Campisi, J. (2016). Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 7(2), 165-176. doi:10.1158/2159-8290.cd-16-0241 | es_ES |
dc.description.references | Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 | es_ES |
dc.description.references | Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57(7), 727-741. doi:10.1016/s0006-2952(98)00307-4 | es_ES |
dc.description.references | Giefing, M., Zemke, N., Brauze, D., Kostrzewska-Poczekaj, M., Luczak, M., Szaumkessel, M., … Jarmuz, M. (2010). High resolution ArrayCGH and expression profiling identifies PTPRD and PCDH17/PCH68 as tumor suppressor gene candidates in laryngeal squamous cell carcinoma. Genes, Chromosomes and Cancer, 50(3), 154-166. doi:10.1002/gcc.20840 | es_ES |
dc.description.references | Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E., Krasnov, P., Virtuoso, L. P., … Gudkov, A. V. (2017). p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging, 9(8), 1867-1884. doi:10.18632/aging.101268 | es_ES |
dc.description.references | Hecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. (2014). Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 6(231), 231ra47-231ra47. doi:10.1126/scitranslmed.3008182 | es_ES |
dc.description.references | Hocine, O., Gary-Bobo, M., Brevet, D., Maynadier, M., Fontanel, S., Raehm, L., … Frochot, C. (2010). Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. International Journal of Pharmaceutics, 402(1-2), 221-230. doi:10.1016/j.ijpharm.2010.10.004 | es_ES |
dc.description.references | Ikediobi, O. N., Davies, H., Bignell, G., Edkins, S., Stevens, C., O’Meara, S., … Wooster, R. (2006). Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Molecular Cancer Therapeutics, 5(11), 2606-2612. doi:10.1158/1535-7163.mct-06-0433 | es_ES |
dc.description.references | Ivanov, A., Pawlikowski, J., Manoharan, I., van Tuyn, J., Nelson, D. M., Rai, T. S., … Adams, P. D. (2013). Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 202(1), 129-143. doi:10.1083/jcb.201212110 | es_ES |
dc.description.references | Kile, B. T. (2014). The role of apoptosis in megakaryocytes and platelets. British Journal of Haematology, 165(2), 217-226. doi:10.1111/bjh.12757 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., … Lowe, S. W. (2008). Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell, 134(4), 657-667. doi:10.1016/j.cell.2008.06.049 | es_ES |
dc.description.references | Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25 | es_ES |
dc.description.references | Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatory responses: aging and cancer perspectives. Trends in Immunology, 36(4), 217-228. doi:10.1016/j.it.2015.02.009 | es_ES |
dc.description.references | Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., … Hwang, E. S. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5(2), 187-195. doi:10.1111/j.1474-9726.2006.00199.x | es_ES |
dc.description.references | Li, W., Fan, J., Hochhauser, D., Banerjee, D., Zielinski, Z., Almasan, A., … Bertino, J. R. (1995). Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proceedings of the National Academy of Sciences, 92(22), 10436-10440. doi:10.1073/pnas.92.22.10436 | es_ES |
dc.description.references | Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 | es_ES |
dc.description.references | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). doi:10.1186/s13059-014-0550-8 | es_ES |
dc.description.references | Massaro, R. R., Faião-Flores, F., Rebecca, V. W., Sandri, S., Alves-Fernandes, D. K., Pennacchi, P. C., … Maria-Engler, S. S. (2017). Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacological Research, 119, 242-250. doi:10.1016/j.phrs.2017.02.013 | es_ES |
dc.description.references | Mosteiro, L., Pantoja, C., Alcazar, N., Marión, R. M., Chondronasiou, D., Rovira, M., … Serrano, M. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 354(6315), aaf4445. doi:10.1126/science.aaf4445 | es_ES |
dc.description.references | Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., … Serrano, M. (2013). Programmed Cell Senescence during Mammalian Embryonic Development. Cell, 155(5), 1104-1118. doi:10.1016/j.cell.2013.10.019 | es_ES |
dc.description.references | Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823 | es_ES |
dc.description.references | Nair, J. B., Mohapatra, S., Ghosh, S., & Maiti, K. K. (2015). Novel lysosome targeted molecular transporter built on a guanidinium-poly-(propylene imine) hybrid dendron for efficient delivery of doxorubicin into cancer cells. Chemical Communications, 51(12), 2403-2406. doi:10.1039/c4cc09829c | es_ES |
dc.description.references | Narita, M., Young, A. R. J., Arakawa, S., Samarajiwa, S. A., Nakashima, T., Yoshida, S., … Narita, M. (2011). Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science, 332(6032), 966-970. doi:10.1126/science.1205407 | es_ES |
dc.description.references | Pan, J., Li, D., Xu, Y., Zhang, J., Wang, Y., Chen, M., … Meng, A. (2017). Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. International Journal of Radiation Oncology*Biology*Physics, 99(2), 353-361. doi:10.1016/j.ijrobp.2017.02.216 | es_ES |
dc.description.references | Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J.-C., Des Rosiers, C., Zeller, M., … Vergely, C. (2011). Oxidative Stress and Myocardial Gene Alterations Associated with Doxorubicin-Induced Cardiotoxicity in Rats Persist for 2 Months after Treatment Cessation. Journal of Pharmacology and Experimental Therapeutics, 339(3), 807-814. doi:10.1124/jpet.111.185892 | es_ES |
dc.description.references | Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M. C., Morton, J. P., … Keyes, W. M. (2017). The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes & Development, 31(2), 172-183. doi:10.1101/gad.290635.116 | es_ES |
dc.description.references | Roos, C. M., Zhang, B., Palmer, A. K., Ogrodnik, M. B., Pirtskhalava, T., Thalji, N. M., … Miller, J. D. (2016). Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 15(5), 973-977. doi:10.1111/acel.12458 | es_ES |
dc.description.references | Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., … LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8(1). doi:10.1038/ncomms14532 | es_ES |
dc.description.references | Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397-408. doi:10.1038/nrc3960 | es_ES |
dc.description.references | Sheng, Y., Xu, J., You, Y., Xu, F., & Chen, Y. (2015). Acid-Sensitive Peptide-Conjugated Doxorubicin Mediates the Lysosomal Pathway of Apoptosis and Reverses Drug Resistance in Breast Cancer. Molecular Pharmaceutics, 12(7), 2217-2228. doi:10.1021/mp500386y | es_ES |
dc.description.references | Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943 | es_ES |
dc.description.references | Slowing, I. I., Vivero-Escoto, J. L., Zhao, Y., Kandel, K., Peeraphatdit, C., Trewyn, B. G., & Lin, V. S.-Y. (2011). Exocytosis of Mesoporous Silica Nanoparticles from Mammalian Cells: From Asymmetric Cell-to-Cell Transfer to Protein Harvesting. Small, 7(11), 1526-1532. doi:10.1002/smll.201002077 | es_ES |
dc.description.references | Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004 | es_ES |
dc.description.references | Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M. C., Di Giacomo, V., … Keyes, W. M. (2013). Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell, 155(5), 1119-1130. doi:10.1016/j.cell.2013.10.041 | es_ES |
dc.description.references | Tai, H., Wang, Z., Gong, H., Han, X., Zhou, J., Wang, X., … Xiao, H. (2016). Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy, 13(1), 99-113. doi:10.1080/15548627.2016.1247143 | es_ES |
dc.description.references | Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276u | es_ES |
dc.description.references | Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016 | es_ES |
dc.description.references | Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. W. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5). doi:10.1038/natrevmats.2016.14 | es_ES |
dc.description.references | Yanes, R. E., Tarn, D., Hwang, A. A., Ferris, D. P., Sherman, S. P., Thomas, C. R., … Tamanoi, F. (2012). Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small, 9(5), 697-704. doi:10.1002/smll.201201811 | es_ES |
dc.description.references | Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., … Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 7(1). doi:10.1038/ncomms11190 | es_ES |
dc.description.references | Yun, M. H., Davaapil, H., & Brockes, J. P. (2015). Recurrent turnover of senescent cells during regeneration of a complex structure. eLife, 4. doi:10.7554/elife.05505 | es_ES |
dc.description.references | Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344 | es_ES |
dc.description.references | Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445 | es_ES |