- -

Enhancing Pockels effect in strained silicon waveguides

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Enhancing Pockels effect in strained silicon waveguides

Show full item record

Olivares-Sánchez-Mellado, I.; Parra Gómez, J.; Brimont, ACJ.; Sanchis Kilders, P. (2019). Enhancing Pockels effect in strained silicon waveguides. Optics Express. 27(19):26882-26892. https://doi.org/10.1364/OE.27.026882

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143330

Files in this item

Item Metadata

Title: Enhancing Pockels effect in strained silicon waveguides
Author: Olivares-Sánchez-Mellado, Irene Parra Gómez, Jorge Brimont, Antoine Christian Jacques Sanchis Kilders, Pablo
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] The magnitude and origin of the electro-optic measurements in strained silicon devices has been lately the object of a great controversy. Furthermore, recent works underline the importance of the masking effect of ...[+]
Subjects: Nonlinearity , Generation
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.27.026882
Publisher:
The Optical Society
Publisher version: https://doi.org/10.1364/OE.27.026882
Project ID:
info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/MECD//FPU17%2F04224/
Description: © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"
Thanks:
Ministerio de Economía y Competitividad (MINECO/FEDER, UE) (TEC2016-76849); Universitat Politècnica de València (FPI-Irene Olivares); Ministerio de Educación, Cultura y Deporte (FPU17/04224); Generalitat Valenciana. Irene ...[+]
Type: Artículo

References

Komljenovic, T., Huang, D., Pintus, P., Tran, M. A., Davenport, M. L., & Bowers, J. E. (2018). Photonic Integrated Circuits Using Heterogeneous Integration on Silicon. Proceedings of the IEEE, 106(12), 2246-2257. doi:10.1109/jproc.2018.2864668

He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., … Cai, X. (2019). High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics, 13(5), 359-364. doi:10.1038/s41566-019-0378-6

Abel, S., Eltes, F., Ortmann, J. E., Messner, A., Castera, P., Wagner, T., … Fompeyrine, J. (2018). Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials, 18(1), 42-47. doi:10.1038/s41563-018-0208-0 [+]
Komljenovic, T., Huang, D., Pintus, P., Tran, M. A., Davenport, M. L., & Bowers, J. E. (2018). Photonic Integrated Circuits Using Heterogeneous Integration on Silicon. Proceedings of the IEEE, 106(12), 2246-2257. doi:10.1109/jproc.2018.2864668

He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., … Cai, X. (2019). High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics, 13(5), 359-364. doi:10.1038/s41566-019-0378-6

Abel, S., Eltes, F., Ortmann, J. E., Messner, A., Castera, P., Wagner, T., … Fompeyrine, J. (2018). Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials, 18(1), 42-47. doi:10.1038/s41563-018-0208-0

Haffner, C., Chelladurai, D., Fedoryshyn, Y., Josten, A., Baeuerle, B., Heni, W., … Leuthold, J. (2018). Low-loss plasmon-assisted electro-optic modulator. Nature, 556(7702), 483-486. doi:10.1038/s41586-018-0031-4

Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179

Jacobsen, R. S., Andersen, K. N., Borel, P. I., Fage-Pedersen, J., Frandsen, L. H., Hansen, O., … Bjarklev, A. (2006). Strained silicon as a new electro-optic material. Nature, 441(7090), 199-202. doi:10.1038/nature04706

Cazzanelli, M., & Schilling, J. (2016). Second order optical nonlinearity in silicon by symmetry breaking. Applied Physics Reviews, 3(1), 011104. doi:10.1063/1.4941558

Manganelli, C. L., Pintus, P., & Bonati, C. (2015). Modeling of strain-induced Pockels effect in Silicon. Optics Express, 23(22), 28649. doi:10.1364/oe.23.028649

Puckett, M. W., Smalley, J. S. T., Abashin, M., Grieco, A., & Fainman, Y. (2014). Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation. Optics Letters, 39(6), 1693. doi:10.1364/ol.39.001693

Bianco, F., Fedus, K., Enrichi, F., Pierobon, R., Cazzanelli, M., Ghulinyan, M., … Pavesi, L. (2012). Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology, 27(8), 085009. doi:10.1088/0268-1242/27/8/085009

Chmielak, B., Matheisen, C., Ripperda, C., Bolten, J., Wahlbrink, T., Waldow, M., & Kurz, H. (2013). Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides. Optics Express, 21(21), 25324. doi:10.1364/oe.21.025324

Schriever, C., Bianco, F., Cazzanelli, M., Ghulinyan, M., Eisenschmidt, C., de Boor, J., … Schilling, J. (2014). Second-Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Advanced Optical Materials, 3(1), 129-136. doi:10.1002/adom.201400370

Chmielak, B., Waldow, M., Matheisen, C., Ripperda, C., Bolten, J., Wahlbrink, T., … Kurz, H. (2011). Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express, 19(18), 17212. doi:10.1364/oe.19.017212

Damas, P., Le Roux, X., Le Bourdais, D., Cassan, E., Marris-Morini, D., Izard, N., … Vivien, L. (2014). Wavelength dependence of Pockels effect in strained silicon waveguides. Optics Express, 22(18), 22095. doi:10.1364/oe.22.022095

Sharif Azadeh, S., Merget, F., Nezhad, M. P., & Witzens, J. (2015). On the measurement of the Pockels effect in strained silicon. Optics Letters, 40(8), 1877. doi:10.1364/ol.40.001877

Borghi, M., Mancinelli, M., Merget, F., Witzens, J., Bernard, M., Ghulinyan, M., … Pavesi, L. (2015). High-frequency electro-optic measurement of strained silicon racetrack resonators. Optics Letters, 40(22), 5287. doi:10.1364/ol.40.005287

Sharma, R., Puckett, M. W., Lin, H.-H., Isichenko, A., Vallini, F., & Fainman, Y. (2016). Effect of dielectric claddings on the electro-optic behavior of silicon waveguides. Optics Letters, 41(6), 1185. doi:10.1364/ol.41.001185

Borghi, M., Mancinelli, M., Bernard, M., Ghulinyan, M., Pucker, G., & Pavesi, L. (2016). Homodyne Detection of Free Carrier Induced Electro-Optic Modulation in Strained Silicon Resonators. Journal of Lightwave Technology, 34(24), 5657-5668. doi:10.1109/jlt.2016.2628183

Olivares, I., Angelova, T., & Sanchis, P. (2017). On the influence of interface charging dynamics and stressing conditions in strained silicon devices. Scientific Reports, 7(1). doi:10.1038/s41598-017-05067-9

Khurgin, J. B., Stievater, T. H., Pruessner, M. W., & Rabinovich, W. S. (2015). On the origin of the second-order nonlinearity in strained Si–SiN structures. Journal of the Optical Society of America B, 32(12), 2494. doi:10.1364/josab.32.002494

Damas, P., Marris-Morini, D., Cassan, E., & Vivien, L. (2016). Bond orbital description of the strain-induced second-order optical susceptibility in silicon. Physical Review B, 93(16). doi:10.1103/physrevb.93.165208

Damas, P., Berciano, M., Marcaud, G., Alonso Ramos, C., Marris-Morini, D., Cassan, E., & Vivien, L. (2017). Comprehensive description of the electro-optic effects in strained silicon waveguides. Journal of Applied Physics, 122(15), 153105. doi:10.1063/1.4985836

Avrutsky, I., & Soref, R. (2011). Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Optics Express, 19(22), 21707. doi:10.1364/oe.19.021707

Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., … Pavesi, L. (2011). Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials, 11(2), 148-154. doi:10.1038/nmat3200

Castellan, C., Trenti, A., Vecchi, C., Marchesini, A., Mancinelli, M., Ghulinyan, M., … Pavesi, L. (2019). On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding. Scientific Reports, 9(1). doi:10.1038/s41598-018-37660-x

Berciano, M., Marcaud, G., Damas, P., Le Roux, X., Crozat, P., Alonso Ramos, C., … Vivien, L. (2018). Fast linear electro-optic effect in a centrosymmetric semiconductor. Communications Physics, 1(1). doi:10.1038/s42005-018-0064-x

Timurdogan, E., Poulton, C. V., Byrd, M. J., & Watts, M. R. (2017). Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nature Photonics, 11(3), 200-206. doi:10.1038/nphoton.2017.14

Wortman, J. J., & Evans, R. A. (1965). Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium. Journal of Applied Physics, 36(1), 153-156. doi:10.1063/1.1713863

Hopcroft, M. A., Nix, W. D., & Kenny, T. W. (2010). What is the Young’s Modulus of Silicon? Journal of Microelectromechanical Systems, 19(2), 229-238. doi:10.1109/jmems.2009.2039697

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record