Mostrar el registro sencillo del ítem
dc.contributor.author | Olivares-Sánchez-Mellado, Irene | es_ES |
dc.contributor.author | Parra Gómez, Jorge | es_ES |
dc.contributor.author | Brimont, Antoine Christian Jacques | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2020-05-15T03:03:26Z | |
dc.date.available | 2020-05-15T03:03:26Z | |
dc.date.issued | 2019-09-16 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143330 | |
dc.description | © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | [EN] The magnitude and origin of the electro-optic measurements in strained silicon devices has been lately the object of a great controversy. Furthermore, recent works underline the importance of the masking effect of free carriers in strained waveguides and the low interaction between the mode and the highly strained areas. In the present work, the use of a p-i-n junction and an asymmetric cladding is proposed to eliminate the unwanted carrier influence and improve the electro-optical modulation response. The proposed configuration enhances the effective refractive index due to the strain-induced Pockels effect in more than two orders of magnitude with respect to the usual configuration. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | es_ES |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO/FEDER, UE) (TEC2016-76849); Universitat Politècnica de València (FPI-Irene Olivares); Ministerio de Educación, Cultura y Deporte (FPU17/04224); Generalitat Valenciana. Irene Olivares and Jorge Parra acknowledges the Universitat Politècnica de València and Generalitat Valenciana, respectively, for funding their research staff training (FPI) grant. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Nonlinearity | es_ES |
dc.subject | Generation | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Enhancing Pockels effect in strained silicon waveguides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.27.026882 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F04224/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Olivares-Sánchez-Mellado, I.; Parra Gómez, J.; Brimont, ACJ.; Sanchis Kilders, P. (2019). Enhancing Pockels effect in strained silicon waveguides. Optics Express. 27(19):26882-26892. https://doi.org/10.1364/OE.27.026882 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.27.026882 | es_ES |
dc.description.upvformatpinicio | 26882 | es_ES |
dc.description.upvformatpfin | 26892 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.pasarela | S\393570 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Komljenovic, T., Huang, D., Pintus, P., Tran, M. A., Davenport, M. L., & Bowers, J. E. (2018). Photonic Integrated Circuits Using Heterogeneous Integration on Silicon. Proceedings of the IEEE, 106(12), 2246-2257. doi:10.1109/jproc.2018.2864668 | es_ES |
dc.description.references | He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., … Cai, X. (2019). High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics, 13(5), 359-364. doi:10.1038/s41566-019-0378-6 | es_ES |
dc.description.references | Abel, S., Eltes, F., Ortmann, J. E., Messner, A., Castera, P., Wagner, T., … Fompeyrine, J. (2018). Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials, 18(1), 42-47. doi:10.1038/s41563-018-0208-0 | es_ES |
dc.description.references | Haffner, C., Chelladurai, D., Fedoryshyn, Y., Josten, A., Baeuerle, B., Heni, W., … Leuthold, J. (2018). Low-loss plasmon-assisted electro-optic modulator. Nature, 556(7702), 483-486. doi:10.1038/s41586-018-0031-4 | es_ES |
dc.description.references | Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179 | es_ES |
dc.description.references | Jacobsen, R. S., Andersen, K. N., Borel, P. I., Fage-Pedersen, J., Frandsen, L. H., Hansen, O., … Bjarklev, A. (2006). Strained silicon as a new electro-optic material. Nature, 441(7090), 199-202. doi:10.1038/nature04706 | es_ES |
dc.description.references | Cazzanelli, M., & Schilling, J. (2016). Second order optical nonlinearity in silicon by symmetry breaking. Applied Physics Reviews, 3(1), 011104. doi:10.1063/1.4941558 | es_ES |
dc.description.references | Manganelli, C. L., Pintus, P., & Bonati, C. (2015). Modeling of strain-induced Pockels effect in Silicon. Optics Express, 23(22), 28649. doi:10.1364/oe.23.028649 | es_ES |
dc.description.references | Puckett, M. W., Smalley, J. S. T., Abashin, M., Grieco, A., & Fainman, Y. (2014). Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation. Optics Letters, 39(6), 1693. doi:10.1364/ol.39.001693 | es_ES |
dc.description.references | Bianco, F., Fedus, K., Enrichi, F., Pierobon, R., Cazzanelli, M., Ghulinyan, M., … Pavesi, L. (2012). Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology, 27(8), 085009. doi:10.1088/0268-1242/27/8/085009 | es_ES |
dc.description.references | Chmielak, B., Matheisen, C., Ripperda, C., Bolten, J., Wahlbrink, T., Waldow, M., & Kurz, H. (2013). Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides. Optics Express, 21(21), 25324. doi:10.1364/oe.21.025324 | es_ES |
dc.description.references | Schriever, C., Bianco, F., Cazzanelli, M., Ghulinyan, M., Eisenschmidt, C., de Boor, J., … Schilling, J. (2014). Second-Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Advanced Optical Materials, 3(1), 129-136. doi:10.1002/adom.201400370 | es_ES |
dc.description.references | Chmielak, B., Waldow, M., Matheisen, C., Ripperda, C., Bolten, J., Wahlbrink, T., … Kurz, H. (2011). Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express, 19(18), 17212. doi:10.1364/oe.19.017212 | es_ES |
dc.description.references | Damas, P., Le Roux, X., Le Bourdais, D., Cassan, E., Marris-Morini, D., Izard, N., … Vivien, L. (2014). Wavelength dependence of Pockels effect in strained silicon waveguides. Optics Express, 22(18), 22095. doi:10.1364/oe.22.022095 | es_ES |
dc.description.references | Sharif Azadeh, S., Merget, F., Nezhad, M. P., & Witzens, J. (2015). On the measurement of the Pockels effect in strained silicon. Optics Letters, 40(8), 1877. doi:10.1364/ol.40.001877 | es_ES |
dc.description.references | Borghi, M., Mancinelli, M., Merget, F., Witzens, J., Bernard, M., Ghulinyan, M., … Pavesi, L. (2015). High-frequency electro-optic measurement of strained silicon racetrack resonators. Optics Letters, 40(22), 5287. doi:10.1364/ol.40.005287 | es_ES |
dc.description.references | Sharma, R., Puckett, M. W., Lin, H.-H., Isichenko, A., Vallini, F., & Fainman, Y. (2016). Effect of dielectric claddings on the electro-optic behavior of silicon waveguides. Optics Letters, 41(6), 1185. doi:10.1364/ol.41.001185 | es_ES |
dc.description.references | Borghi, M., Mancinelli, M., Bernard, M., Ghulinyan, M., Pucker, G., & Pavesi, L. (2016). Homodyne Detection of Free Carrier Induced Electro-Optic Modulation in Strained Silicon Resonators. Journal of Lightwave Technology, 34(24), 5657-5668. doi:10.1109/jlt.2016.2628183 | es_ES |
dc.description.references | Olivares, I., Angelova, T., & Sanchis, P. (2017). On the influence of interface charging dynamics and stressing conditions in strained silicon devices. Scientific Reports, 7(1). doi:10.1038/s41598-017-05067-9 | es_ES |
dc.description.references | Khurgin, J. B., Stievater, T. H., Pruessner, M. W., & Rabinovich, W. S. (2015). On the origin of the second-order nonlinearity in strained Si–SiN structures. Journal of the Optical Society of America B, 32(12), 2494. doi:10.1364/josab.32.002494 | es_ES |
dc.description.references | Damas, P., Marris-Morini, D., Cassan, E., & Vivien, L. (2016). Bond orbital description of the strain-induced second-order optical susceptibility in silicon. Physical Review B, 93(16). doi:10.1103/physrevb.93.165208 | es_ES |
dc.description.references | Damas, P., Berciano, M., Marcaud, G., Alonso Ramos, C., Marris-Morini, D., Cassan, E., & Vivien, L. (2017). Comprehensive description of the electro-optic effects in strained silicon waveguides. Journal of Applied Physics, 122(15), 153105. doi:10.1063/1.4985836 | es_ES |
dc.description.references | Avrutsky, I., & Soref, R. (2011). Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Optics Express, 19(22), 21707. doi:10.1364/oe.19.021707 | es_ES |
dc.description.references | Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., … Pavesi, L. (2011). Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials, 11(2), 148-154. doi:10.1038/nmat3200 | es_ES |
dc.description.references | Castellan, C., Trenti, A., Vecchi, C., Marchesini, A., Mancinelli, M., Ghulinyan, M., … Pavesi, L. (2019). On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding. Scientific Reports, 9(1). doi:10.1038/s41598-018-37660-x | es_ES |
dc.description.references | Berciano, M., Marcaud, G., Damas, P., Le Roux, X., Crozat, P., Alonso Ramos, C., … Vivien, L. (2018). Fast linear electro-optic effect in a centrosymmetric semiconductor. Communications Physics, 1(1). doi:10.1038/s42005-018-0064-x | es_ES |
dc.description.references | Timurdogan, E., Poulton, C. V., Byrd, M. J., & Watts, M. R. (2017). Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nature Photonics, 11(3), 200-206. doi:10.1038/nphoton.2017.14 | es_ES |
dc.description.references | Wortman, J. J., & Evans, R. A. (1965). Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium. Journal of Applied Physics, 36(1), 153-156. doi:10.1063/1.1713863 | es_ES |
dc.description.references | Hopcroft, M. A., Nix, W. D., & Kenny, T. W. (2010). What is the Young’s Modulus of Silicon? Journal of Microelectromechanical Systems, 19(2), 229-238. doi:10.1109/jmems.2009.2039697 | es_ES |