Komoroski, E. M., Komoroski, R. A., Valentine, J. L., Pearce, J. M., & Kearns, G. L. (2000). The Use of Nuclear Magnetic Resonance Spectroscopy in the Detection of Drug Intoxication. Journal of Analytical Toxicology, 24(3), 180-187. doi:10.1093/jat/24.3.180
Drugs of Abuse: A DEA Resource Guide 2017
World Drug Report 2017
[+]
Komoroski, E. M., Komoroski, R. A., Valentine, J. L., Pearce, J. M., & Kearns, G. L. (2000). The Use of Nuclear Magnetic Resonance Spectroscopy in the Detection of Drug Intoxication. Journal of Analytical Toxicology, 24(3), 180-187. doi:10.1093/jat/24.3.180
Drugs of Abuse: A DEA Resource Guide 2017
World Drug Report 2017
European Drug Report: Trends and Developments 2017
Namera, A., Nakamoto, A., Saito, T., & Nagao, M. (2011). Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicology, 29(1), 1-24. doi:10.1007/s11419-010-0107-9
Namera, A., Kawamura, M., Nakamoto, A., Saito, T., & Nagao, M. (2015). Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicology, 33(2), 175-194. doi:10.1007/s11419-015-0270-0
Kidwell, D. A., Holland, J. C., & Athanaselis, S. (1998). Testing for drugs of abuse in saliva and sweat. Journal of Chromatography B: Biomedical Sciences and Applications, 713(1), 111-135. doi:10.1016/s0378-4347(97)00572-0
Cappelle, D., De Doncker, M., Gys, C., Krysiak, K., De Keukeleire, S., Maho, W., … Neels, H. (2017). A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. Analytica Chimica Acta, 960, 101-109. doi:10.1016/j.aca.2017.01.022
Koster, R. A., Alffenaar, J.-W. C., Greijdanus, B., VanDerNagel, J. E. L., & Uges, D. R. A. (2014). Fast and Highly Selective LC-MS/MS Screening for THC and 16 Other Abused Drugs and Metabolites in Human Hair to Monitor Patients for Drug Abuse. Therapeutic Drug Monitoring, 36(2), 234-243. doi:10.1097/ftd.0b013e3182a377e8
Li, Y., Uddayasankar, U., He, B., Wang, P., & Qin, L. (2017). Fast, Sensitive, and Quantitative Point-of-Care Platform for the Assessment of Drugs of Abuse in Urine, Serum, and Whole Blood. Analytical Chemistry, 89(16), 8273-8281. doi:10.1021/acs.analchem.7b01288
De la Asunción-Nadal, V., Armenta, S., Garrigues, S., & de la Guardia, M. (2017). Identification and determination of synthetic cannabinoids in herbal products by dry film attenuated total reflectance-infrared spectroscopy. Talanta, 167, 344-351. doi:10.1016/j.talanta.2017.02.026
Risoluti, R., Materazzi, S., Gregori, A., & Ripani, L. (2016). Early detection of emerging street drugs by near infrared spectroscopy and chemometrics. Talanta, 153, 407-413. doi:10.1016/j.talanta.2016.02.044
Andreou, C., Hoonejani, M. R., Barmi, M. R., Moskovits, M., & Meinhart, C. D. (2013). Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano, 7(8), 7157-7164. doi:10.1021/nn402563f
He, S., Liu, D., Wang, Z., Cai, K., & Jiang, X. (2011). Utilization of unmodified gold nanoparticles in colorimetric detection. Science China Physics, Mechanics and Astronomy, 54(10), 1757-1765. doi:10.1007/s11433-011-4486-7
Substance Abuse (Depressants or Sedative-Hypnotic Drugs) 2014
Zhai, D., Agrawalla, B. K., Eng, P. S. F., Lee, S.-C., Xu, W., & Chang, Y.-T. (2013). Development of a fluorescent sensor for an illicit date rape drug – GBL. Chemical Communications, 49(55), 6170. doi:10.1039/c3cc43153c
Zhai, D., Tan, Y. Q. E., Xu, W., & Chang, Y.-T. (2014). Development of a fluorescent sensor for illicit date rape drug GHB. Chemical Communications, 50(22), 2904. doi:10.1039/c3cc49603a
Baumes, L. A., Buaki Sogo, M., Montes-Navajas, P., Corma, A., & Garcia, H. (2010). A Colorimetric Sensor Array for the Detection of the Date-Rape Drug γ-Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chemistry - A European Journal, 16(15), 4489-4495. doi:10.1002/chem.200903127
Wang, W., Dong, Z.-Z., Yang, G., Leung, C.-H., Lin, S., & Ma, D.-L. (2017). A long-lived iridium(iii) chemosensor for the real-time detection of GHB. Journal of Materials Chemistry B, 5(15), 2739-2742. doi:10.1039/c6tb03396b
Morris, J. A. (2007). Modified Cobalt Thiocyanate Presumptive Color Test for Ketamine Hydrochloride. Journal of Forensic Sciences, 52(1), 84-87. doi:10.1111/j.1556-4029.2006.00331.x
Merck Manual Drug Information 2014
Argente-García, A., Jornet-Martínez, N., Herráez-Hernández, R., & Campíns-Falcó, P. (2017). A passive solid sensor for in-situ colorimetric estimation of the presence of ketamine in illicit drug samples. Sensors and Actuators B: Chemical, 253, 1137-1144. doi:10.1016/j.snb.2017.07.183
ELMOSALLAMY, M. A. F., & AMIN, A. S. (2014). New Potentiometric and Spectrophotometric Methods for the Determination of Dextromethorphan in Pharmaceutical Preparations. Analytical Sciences, 30(3), 419-425. doi:10.2116/analsci.30.419
Mohseni, N., & Bahram, M. (2016). Mean centering of ratio spectra for colorimetric determination of morphine and codeine in pharmaceuticals and biological samples using melamine modified gold nanoparticles. Anal. Methods, 8(37), 6739-6747. doi:10.1039/c6ay02091g
SAKAI, T., & OHNO, N. (1986). Spectrophotometric determination of stimulant drugs in urine by color reaction with tetrabromophenolphthalein ethyl ester. Analytical Sciences, 2(3), 275-279. doi:10.2116/analsci.2.275
Sakai, T., & Ohno, N. (1987). Improved determination of methamphetamine, ephedrine and methylephedrine in urine by extraction-thermospectrometry. The Analyst, 112(2), 149. doi:10.1039/an9871200149
Argente-García, A., Jornet-Martínez, N., Herráez-Hernández, R., & Campíns-Falcó, P. (2016). A solid colorimetric sensor for the analysis of amphetamine-like street samples. Analytica Chimica Acta, 943, 123-130. doi:10.1016/j.aca.2016.09.020
Guler, E., Yilmaz Sengel, T., Gumus, Z. P., Arslan, M., Coskunol, H., Timur, S., & Yagci, Y. (2017). Mobile Phone Sensing of Cocaine in a Lateral Flow Assay Combined with a Biomimetic Material. Analytical Chemistry, 89(18), 9629-9632. doi:10.1021/acs.analchem.7b03017
Choodum, A., Parabun, K., Klawach, N., Daeid, N. N., Kanatharana, P., & Wongniramaikul, W. (2014). Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology. Forensic Science International, 235, 8-13. doi:10.1016/j.forsciint.2013.11.018
Choodum, A., Kanatharana, P., Wongniramaikul, W., & NicDaeid, N. (2015). A sol–gel colorimetric sensor for methamphetamine detection. Sensors and Actuators B: Chemical, 215, 553-560. doi:10.1016/j.snb.2015.03.089
Moreno, D., Greñu, B. D. de, García, B., Ibeas, S., & Torroba, T. (2012). A turn-on fluorogenic probe for detection of MDMA from ecstasy tablets. Chemical Communications, 48(24), 2994. doi:10.1039/c2cc17823k
Fu, Y., Shi, L., Zhu, D., He, C., Wen, D., He, Q., … Cheng, J. (2013). Fluorene–thiophene-based thin-film fluorescent chemosensor for methamphetamine vapor by thiophene–amine interaction. Sensors and Actuators B: Chemical, 180, 2-7. doi:10.1016/j.snb.2011.10.031
He, M., Peng, H., Wang, G., Chang, X., Miao, R., Wang, W., & Fang, Y. (2016). Fabrication of a new fluorescent film and its superior sensing performance to N-methamphetamine in vapor phase. Sensors and Actuators B: Chemical, 227, 255-262. doi:10.1016/j.snb.2015.12.048
Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186j
He, C., He, Q., Deng, C., Shi, L., Fu, Y., Cao, H., & Cheng, J. (2011). Determination of Methamphetamine Hydrochloride by highly fluorescent polyfluorene with NH2-terminated side chains. Synthetic Metals, 161(3-4), 293-297. doi:10.1016/j.synthmet.2010.11.038
Masseroni, D., Biavardi, E., Genovese, D., Rampazzo, E., Prodi, L., & Dalcanale, E. (2015). A fluorescent probe for ecstasy. Chemical Communications, 51(64), 12799-12802. doi:10.1039/c5cc04760a
Reviriego, F., Navarro, P., García-España, E., Albelda, M. T., Frías, J. C., Domènech, A., … Ortí, E. (2008). Diazatetraester 1H-Pyrazole Crowns as Fluorescent Chemosensors for AMPH, METH, MDMA (Ecstasy), and Dopamine. Organic Letters, 10(22), 5099-5102. doi:10.1021/ol801732t
Yamada, H., Ikeda-Wada, S., & Oguri, K. (1999). Highly Specific and Convenient Color Reaction for Methylenedioxymethamphetamine and Related Drugs Using Chromotropic Acid. Application as a Drug Screening Test. JOURNAL OF HEALTH SCIENCE, 45(6), 303-308. doi:10.1248/jhs.45.303
Matsuda, K., Fukuzawa, T., Ishii, Y., & Yamada, H. (2007). Color reaction of 3,4-methylenedioxyamphetamines with chromotropic acid: its improvement and application to the screening of seized tablets. Forensic Toxicology, 25(1), 37-40. doi:10.1007/s11419-007-0022-x
Rouhani, S., & Haghgoo, S. (2015). A novel fluorescence nanosensor based on 1,8-naphthalimide-thiophene doped silica nanoparticles, and its application to the determination of methamphetamine. Sensors and Actuators B: Chemical, 209, 957-965. doi:10.1016/j.snb.2014.12.035
Maue, M., & Schrader, T. (2005). A Color Sensor for Catecholamines. Angewandte Chemie International Edition, 44(15), 2265-2270. doi:10.1002/anie.200462702
Maue, M., & Schrader, T. (2005). A Color Sensor for Catecholamines. Angewandte Chemie, 117(15), 2305-2310. doi:10.1002/ange.200462702
Mosnaim, A. D., & Inwang, E. E. (1973). A spectrophotometric method for the quantification of 2-phenylethylamine in biological specimens. Analytical Biochemistry, 54(2), 561-577. doi:10.1016/0003-2697(73)90388-6
Wang, D., Liu, T.-J., Zhang, W.-C., Zhang, W.-C., Slaven IV, W. T., & Li, C.-J. (1998). Enantiomeric discrimination of chiral amines with new fluorescent chemosensors. Chemical Communications, (16), 1747-1748. doi:10.1039/a802855i
El-Didamony, A. M., & Gouda, A. A. (2010). A novel spectrofluorimetric method for the assay of pseudoephedrine hydrochloride in pharmaceutical formulations via derivatization with 4-chloro-7-nitrobenzofurazan. Luminescence, 26(6), 510-517. doi:10.1002/bio.1261
Mazina, J., Aleksejev, V., Ivkina, T., Kaljurand, M., & Poryvkina, L. (2012). Qualitative detection of illegal drugs (cocaine, heroin and MDMA) in seized street samples based on SFS data and ANN: validation of method. Journal of Chemometrics, 26(8-9), 442-455. doi:10.1002/cem.2462
Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature Protocols, 5(6), 1169-1185. doi:10.1038/nprot.2010.66
Shi, Q., Shi, Y., Pan, Y., Yue, Z., Zhang, H., & Yi, C. (2014). Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchimica Acta, 182(3-4), 505-511. doi:10.1007/s00604-014-1349-8
Mao, K., Yang, Z., Du, P., Xu, Z., Wang, Z., & Li, X. (2016). G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Advances, 6(67), 62754-62759. doi:10.1039/c6ra04912e
Shlyahovsky, B., Li, D., Weizmann, Y., Nowarski, R., Kotler, M., & Willner, I. (2007). Spotlighting of Cocaine by an Autonomous Aptamer-Based Machine. Journal of the American Chemical Society, 129(13), 3814-3815. doi:10.1021/ja069291n
Wang, F., Freage, L., Orbach, R., & Willner, I. (2013). Autonomous Replication of Nucleic Acids by Polymerization/Nicking Enzyme/DNAzyme Cascades for the Amplified Detection of DNA and the Aptamer–Cocaine Complex. Analytical Chemistry, 85(17), 8196-8203. doi:10.1021/ac4013094
Wang, J., Song, J., Wang, X., Wu, S., Zhao, Y., Luo, P., & Meng, C. (2016). An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids. Talanta, 161, 437-442. doi:10.1016/j.talanta.2016.08.039
Huang, J., Chen, Y., Yang, L., Zhu, Z., Zhu, G., Yang, X., … Tan, W. (2011). Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. Biosensors and Bioelectronics, 28(1), 450-453. doi:10.1016/j.bios.2011.05.038
Zhang, C., & Johnson, L. W. (2009). Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine. Analytical Chemistry, 81(8), 3051-3055. doi:10.1021/ac802737b
Emrani, A. S., Danesh, N. M., Ramezani, M., Taghdisi, S. M., & Abnous, K. (2016). A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosensors and Bioelectronics, 79, 288-293. doi:10.1016/j.bios.2015.12.025
Roncancio, D., Yu, H., Xu, X., Wu, S., Liu, R., Debord, J., … Xiao, Y. (2014). A Label-Free Aptamer-Fluorophore Assembly for Rapid and Specific Detection of Cocaine in Biofluids. Analytical Chemistry, 86(22), 11100-11106. doi:10.1021/ac503360n
Guler, E., Bozokalfa, G., Demir, B., Gumus, Z. P., Guler, B., Aldemir, E., … Coskunol, H. (2016). An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing. Drug Testing and Analysis, 9(4), 578-587. doi:10.1002/dta.1992
Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649
Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J., & Ferré-Borrull, J. (2009). Fabrication and optical characterization of nanoporous alumina films annealed at different temperatures. Optical Materials, 31(6), 860-864. doi:10.1016/j.optmat.2008.09.008
Oroval, M., Coronado-Puchau, M., Langer, J., Sanz-Ortiz, M. N., Ribes, Á., Aznar, E., … Martínez-Máñez, R. (2016). Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection ofMycoplasmaand Cocaine. Chemistry - A European Journal, 22(38), 13488-13495. doi:10.1002/chem.201602457
Stojanovic, M. N., de Prada, P., & Landry, D. W. (2000). Fluorescent Sensors Based on Aptamer Self-Assembly. Journal of the American Chemical Society, 122(46), 11547-11548. doi:10.1021/ja0022223
Stojanovic, M. N., de Prada, P., & Landry, D. W. (2001). Aptamer-Based Folding Fluorescent Sensor for Cocaine. Journal of the American Chemical Society, 123(21), 4928-4931. doi:10.1021/ja0038171
Stojanovic, M. N., & Landry, D. W. (2002). Aptamer-Based Colorimetric Probe for Cocaine. Journal of the American Chemical Society, 124(33), 9678-9679. doi:10.1021/ja0259483
Liu, Y., & Zhao, Q. (2017). Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer. Analytical and Bioanalytical Chemistry, 409(16), 3993-4000. doi:10.1007/s00216-017-0349-z
Zhou, Z., Du, Y., & Dong, S. (2011). Double-Strand DNA-Templated Formation of Copper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor. Analytical Chemistry, 83(13), 5122-5127. doi:10.1021/ac200120g
Shi, Y., Dai, H., Sun, Y., Hu, J., Ni, P., & Li, Z. (2013). Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. The Analyst, 138(23), 7152. doi:10.1039/c3an00897e
Zhang, Y., Sun, Z., Tang, L., Zhang, H., & Zhang, G.-J. (2016). Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Microchimica Acta, 183(10), 2791-2797. doi:10.1007/s00604-016-1923-3
Zhang, J., Wang, L., Pan, D., Song, S., Boey, F. Y. C., Zhang, H., & Fan, C. (2008). Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small, 4(8), 1196-1200. doi:10.1002/smll.200800057
Li, Y., Ji, X., & Liu, B. (2011). Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Analytical and Bioanalytical Chemistry, 401(1), 213-219. doi:10.1007/s00216-011-5064-6
Zou, R., Lou, X., Ou, H., Zhang, Y., Wang, W., Yuan, M., … Liu, Y. (2012). Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Advances, 2(11), 4636. doi:10.1039/c2ra20307c
Zhang, S., Wang, L., Liu, M., Qiu, Y., Wang, M., Liu, X., … Yu, R. (2016). A novel, label-free fluorescent aptasensor for cocaine detection based on a G-quadruplex and ruthenium polypyridyl complex molecular light switch. Analytical Methods, 8(18), 3740-3746. doi:10.1039/c6ay00231e
Tang, Y., Long, F., Gu, C., Wang, C., Han, S., & He, M. (2016). Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform. Analytica Chimica Acta, 933, 182-188. doi:10.1016/j.aca.2016.05.021
Wang, L., Musile, G., & McCord, B. R. (2017). An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. ELECTROPHORESIS, 39(3), 470-475. doi:10.1002/elps.201700254
Liu, J., & Lu, Y. (2006). Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie International Edition, 45(1), 90-94. doi:10.1002/anie.200502589
Liu, J., & Lu, Y. (2006). Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie, 118(1), 96-100. doi:10.1002/ange.200502589
He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse. Analytical Chemistry, 88(3), 1530-1534. doi:10.1021/acs.analchem.5b04863
Qiu, L., Zhou, H., Zhu, W., Qiu, L., Jiang, J., Shen, G., & Yu, R. (2013). A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New Journal of Chemistry, 37(12), 3998. doi:10.1039/c3nj00594a
Arslan, M., Yilmaz Sengel, T., Guler, E., Gumus, Z. P., Aldemir, E., Akbulut, H., … Yagci, Y. (2017). Double fluorescence assay via a β-cyclodextrin containing conjugated polymer as a biomimetic material for cocaine sensing. Polymer Chemistry, 8(21), 3333-3340. doi:10.1039/c7py00420f
Mao, K., Yang, Z., Li, J., Zhou, X., Li, X., & Hu, J. (2017). A novel colorimetric biosensor based on non-aggregated Au@Ag core–shell nanoparticles for methamphetamine and cocaine detection. Talanta, 175, 338-346. doi:10.1016/j.talanta.2017.07.011
Ma, D.-L., Wang, M., He, B., Yang, C., Wang, W., & Leung, C.-H. (2015). A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture. ACS Applied Materials & Interfaces, 7(34), 19060-19067. doi:10.1021/acsami.5b05861
Du, Y., Li, B., Guo, S., Zhou, Z., Zhou, M., Wang, E., & Dong, S. (2011). G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element. The Analyst, 136(3), 493-497. doi:10.1039/c0an00557f
Zhang, K., Wang, K., Zhu, X., Zhang, J., Xu, L., Huang, B., & Xie, M. (2014). Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method. Chem. Commun., 50(2), 180-182. doi:10.1039/c3cc47418f
Zhou, J., Ellis, A. V., Kobus, H., & Voelcker, N. H. (2012). Aptamer sensor for cocaine using minor groove binder based energy transfer. Analytica Chimica Acta, 719, 76-81. doi:10.1016/j.aca.2012.01.011
Drug Facts 2016
Baudot, P., & Andre, J.-C. (1983). A Low-Cost Differential Fluorimeter for the Detection and Determination of LSD in Illicit Preparations. Journal of Analytical Toxicology, 7(2), 69-71. doi:10.1093/jat/7.2.69
Mohseni, N., Bahram, M., & Baheri, T. (2017). Chemical nose for discrimination of opioids based on unmodified gold nanoparticles. Sensors and Actuators B: Chemical, 250, 509-517. doi:10.1016/j.snb.2017.04.145
Shcherbakova, E. G., Zhang, B., Gozem, S., Minami, T., Zavalij, P. Y., Pushina, M., … Anzenbacher, P. (2017). Supramolecular Sensors for Opiates and Their Metabolites. Journal of the American Chemical Society, 139(42), 14954-14960. doi:10.1021/jacs.7b06371
[-]