- -

Vectores Virtuales de Tensión en Control Directo de Par para una Máquina de Inducción de Seis Fases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vectores Virtuales de Tensión en Control Directo de Par para una Máquina de Inducción de Seis Fases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Entrambasaguas, Paula es_ES
dc.contributor.author González Prieto, Ignacio es_ES
dc.contributor.author Durán Martínez, Mario Javier es_ES
dc.contributor.author Bermúdez Guzmán, Mario es_ES
dc.contributor.author Barrero García, Federico José es_ES
dc.date.accessioned 2020-05-15T09:28:30Z
dc.date.available 2020-05-15T09:28:30Z
dc.date.issued 2018-06-22
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143372
dc.description.abstract [EN] Direct torque control (DTC) strategy is one of the methods used to control multiphase machines. This strategy has been popular in recent decades owing to its speed, robustness and simplicity in the control scheme. However, the appearance of the new secondary x-y currents components typical of multiphase systems can deteriorate the currents quality and increase the losses in the stator copper if they are not regulated properly. That is why the definition and use of the called virtual voltage vectors allow the reduction of these x-y components, thus alleviating the main problem of the direct extension of the DTC to systems with more than three phases. This paper presents the implementation of virtual voltage vectors in a direct torque control for the speed regulation of a six-phase induction machine, validating the goodness of the control strategy proposed by experimental results. es_ES
dc.description.abstract [ES] La estrategia de control directo de par (DTC por sus siglas en inglés) es uno de los métodos empleados para el control de máquinas multifásicas. Esta estrategia ha sido popular en las últimas décadas gracias a su rapidez, robustez y simplicidad en el esquema de control. Sin embargo, la aparición de las nuevas componentes secundarias de corrientes x-y propias de los sistemas multifásicos pueden deteriorar la calidad de las corrientes y aumentar las pérdidas en el cobre del estator si no se regulan adecuadamente. Es por ello por lo que la definición y el uso de los denominados vectores virtuales de tensión permiten la reducción de estas componentes x-y, paliando así el principal problema de la extensión directa del DTC a sistemas con más de tres fases. Este artículo presenta la implementación de vectores virtuales de tensión en un control directo de par para la regulación de la velocidad de máquina de inducción de seis fases, validando la bondad de la estrategia de control propuesta mediante resultados experimentales. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electric Machines es_ES
dc.subject Power Generation es_ES
dc.subject Controlling Machines es_ES
dc.subject Induction Machines es_ES
dc.subject Torque Control es_ES
dc.subject Máquinas Eléctricas es_ES
dc.subject Generación de potencia es_ES
dc.subject Control de Máquinas es_ES
dc.subject Máquinas de Inducción es_ES
dc.subject Control de Par es_ES
dc.title Vectores Virtuales de Tensión en Control Directo de Par para una Máquina de Inducción de Seis Fases es_ES
dc.title.alternative Direct Torque Control based on Virtual Voltage Vector for a Six-phase Induction Machine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2018.9837
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García Entrambasaguas, P.; González Prieto, I.; Durán Martínez, MJ.; Bermúdez Guzmán, M.; Barrero García, FJ. (2018). Vectores Virtuales de Tensión en Control Directo de Par para una Máquina de Inducción de Seis Fases. Revista Iberoamericana de Automática e Informática industrial. 15(3):277-285. https://doi.org/10.4995/riai.2018.9837 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2018.9837 es_ES
dc.description.upvformatpinicio 277 es_ES
dc.description.upvformatpfin 285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9837 es_ES
dc.description.references Abdel-Khalik, A.S., Masoud, M.I. y Williams, B.W. 2012. Improved flux pattern with third harmonic injection for multiphase induction machines. IEEE Transactions on Power Electronics 27, No. 3, 1563-1578. es_ES
dc.description.references Abdel-Khalik, A.S., Masoud, M.I. y Williams, B.W. 2012. Vector controlled multiphase induction machine: harmonic injection using optimized constant gains. Electric Power Systems Research 89, 116-128. es_ES
dc.description.references Alcharea, R., Kianinezhad, R., Nahid-Mobarakeh, B., Betin, F. y Capolino, G.A. 2008. Direct torque control for six-phase symmetrical induction machines. 34th Annual Conference of IEEE Industrial Electronics. es_ES
dc.description.references Arahal, M.R. y Durán, M.J. 2009. PI tuning of five-phase drives with third harmonic injection. Control Engineering Practice 17, 787-797. es_ES
dc.description.references Arnanz, R., García, F.J. y Miguel, L.J. 2016. Métodos de control de motores de inducción: síntesis de la situación actual. Revista Iberoamericana de Automática e Informática industrial 13, 381-392. es_ES
dc.description.references Barrero, F. y Durán, M.J. 2016. Recent advances in the design modeling, and control of multiphase machines - Part I. IEEE Transactions on Industrial Electronics 63, No. 1, 449-458. es_ES
dc.description.references Benatmane, M. y McCoy, T. 1998. Development of a 19 MW PWM converter for U.S. Navy surface ships. Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 109-113. es_ES
dc.description.references Bermúdez, M., González-Prieto, I., Barrero, F., Guzmán, H., Durán, M.J. y Kestelyn, X. 2017. Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives. IEEE Transactions on Industrial Electronics 64, No. 2, 902-911. es_ES
dc.description.references Bojoi, R., Levi, E., Farina, F., Tenconi, A. y Proumo, F. 2006. Dual three-phase induction motor drive with digital current control in the stationary reference frame. IEEE Proceedings Electric Power Applications 153, No. 1, 29-139. es_ES
dc.description.references Che, H.S., Levi, E., Jones, M., Hew, W.P. y Rahim, N.A. 2014a. Current control methods for an asymmetrical six-phase induction motor drive. IEEE Transactions on Power Electronics 29, No. 1, 407-417. es_ES
dc.description.references Che, H.S., Levi, E., Jones, M., Durán, M.J., Hew, W.P. y Rahim, N.A. 2014b. Operation of a six-phase induction machine using series-connected machine-side converters. IEEE Transactions on Industrial Electronics 61, No. 1, 164-176. es_ES
dc.description.references Che, H.S., Durán, M.J., Levi, E., Jones, M., Hew, W.P. y Rahim, N.A. 2013. Post-fault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points. IEEE Energy Conversion Congress and Exposition, 1131-1138. es_ES
dc.description.references Cortés, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E. y Rodríguez, J. 2008. Predictive control in power electronics and drives. IEEE Transactions on Industrial Electronics 55, No. 12, 4312-4324. es_ES
dc.description.references Durán, M.J., Riveros, J.A., Barrero, F., Guzmán, H. y Prieto, J. 2012. Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques. IEEE Transactions on Industrial Applications 48, No. 6, 2059-2067. es_ES
dc.description.references Durán, M.J. y Barrero, F. 2016. Recent Advances in the design modeling, and control of multiphase machines - Part II. IEEE Transactions on Industrial Electronics 63, No. 1, 459-468. es_ES
dc.description.references Ferreira, C.L. y Bucknall, R.W.G. 2004. Modelling and real-time simulation of an advanced marine full-electrical propulsion system. Proc. IEEE PEMD Conference, Edinburgh, U.K., 2, No. 498, 574-579. es_ES
dc.description.references Gamesa Technological Corporation S.A., 2016. Gamesa 5.0 MW. Recuperado de: http://www.gamesacorp.com/recursos/doc/ productos-servicios/aerogeneradores/catalogo-g10x-45mw.pdf es_ES
dc.description.references Gao, L., Fletcher, J.E. y Zheng, L. 2011. Low-speed control improvements for a two-level five-phase inverter-fed induction machine using classic direct torque control. IEEE Transactions on Industrial Electronics 58, No. 7, 2744-2754. es_ES
dc.description.references González, O., Rodas, J., Ayala, M., Gregor, R., Rivera, M., Durán, M. y González-Prieto, I. 2016. Predictive current control with kalman filter observer for a five-phase induction machine operating at fixed switching frequency. es_ES
dc.description.references González-Prieto, I., Durán, M.J., Barrero, F., Bermúdez, M. y Guzmán, H. 2017. Impact of postfault flux adaptation on six-phase induction motor drives with parallel converters. IEEE Transactions on Power Electronics 32, No. 1, 515-528. es_ES
dc.description.references González-Prieto, I., Durán, M.J., Che, H.S., Levi, E., Bermúdez, M. y Barrero, F. 2016. Fault-tolerant operation of six-phase energy conversion systems with parallel machine-side converters. IEEE Transactions on Power Electronics 31, No. 4, 3068-3079. es_ES
dc.description.references González-Prieto, I., Durán, M.J. y Barrero, F. 2016. Fault-tolerant control of six-phase induction motor drives with variable current injection. IEEE Transactions on Power Electronics. es_ES
dc.description.references Gregor, R., Rodas, J., Gregor, D. y Barrero, F. 2015. Reduced-order observer analysis in MBPC techniques applied to the six-phase induction motor drives. INTECH Open Science. es_ES
dc.description.references Guzmán, H., Durán, M.J. y Barrero, F. 2012. A comprehensive fault analysis of a five-phase induction motor drive with an open phase. 15th International Power Electronics and Motion Control Conference, LS5b.3-1 - LS5b.3-6. es_ES
dc.description.references Guzmán, H., Durán, M.J., Barrero, F., Bogado, B. y Toral, S. 2014. Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques. IEEE Transactions on Industrial Electronics 61, No. 9, 4474-4484. es_ES
dc.description.references Guzmán, H., Durán, M.J., Barrero, F., Zarri, L., Bogado, B., González-Prieto, I. y Arahal, M.R. 2016. Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives. IEEE Transactions on Industrial Electronics 63, No. 1, 606-617. es_ES
dc.description.references Hodge, C., Williamson, S. y Smith, A.C. 2002. Direct drive marine propulsion motors. Proc. Int. Conf. Electrical Machines (ICEM), Bruges, Belgium, CD-ROM, Paper 807. es_ES
dc.description.references Jones, M., Slobodan, N., Vukosavic, S., Dujic, D. y Levi, E. 2009. A synchronous current control scheme for multiphase induction motor drives. IEEE Transactions on Energy Conversion 24, No. 4, 860-868. es_ES
dc.description.references Jung, E., Yoo, H., Sul, S., Choi, H. y Choi, Y. 2012. A nine-phase permanent-magnet motor drive system for an ultrahigh-speed elevator. IEEE Transactions on Industrial Applications 48, No. 3, 987-995. es_ES
dc.description.references Khan, M.R., Iqbal, A. y Ahmad, M. 2008. MRAS-based sensorless control of a vector controlled five-phase induction motor drive. Electric Power Systems Research 78, 1311-1321. es_ES
dc.description.references Kianinezhad, R., Nahid, B., Betin, F. y Capolino, G.A. 2006. A novel direct torque control (DTC) method for dual three phase induction motors. IEEE International Conference on Industrial Technology. es_ES
dc.description.references Kianinezhad, R., Alcharea, R., Nahid, B., Betin, F. y Capolino, G.A. 2008. A novel direct torque control (DTC) for six-phase induction motors witch common neutrals. IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion. es_ES
dc.description.references Kouro, S., Cortés, P., Vargas, R., Ammann, U. y Rodríguez, J. 2009. Model predictive control - a simple and powerful method to control power converters. IEEE Transactions on Industrial Electronics 56, No. 6, 1826-1838. es_ES
dc.description.references Levi, E. 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Transactions on Industrial Electronics 63, No. 1, 433-448. es_ES
dc.description.references Libo, Z., Fletcher, J.E., Williams, B.W. y Xiangning, H. 2008. Dual-plane vector control of a five-phase induction machine for an improved flux pattern. IEEE Transactions on Industrial Electronics 55, No. 5, 1996-2005. es_ES
dc.description.references Lu, S. y Corzine, K. 2005. Multilevel multi-phase propulsion drives. Proc. IEEE ESTS, Philadelphia, PA, 363-370. es_ES
dc.description.references Martín, C., Arahal, M.R., Barrero, F. y Durán, M.J. 2016. Five-phase induction motor rotor current observer for finite control set model predictive control of stator current. IEEE Transactions on Industrial Electronics 63, No. 7, 4527-4538. es_ES
dc.description.references McCoy, T. y Benatmane, M. 1998. The all-electric warship: An overview of the U.S. Navy's integrated power system development programme. Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 1-4. es_ES
dc.description.references Mengoni, M., Zarri, L., Tani, A., Parsa, L., Serra, G. y Casadei, D. 2015. High-torque density control of multiphase induction motor drives operating over a wide speed range. IEEE Transactions on Industrial Electronics 62, No. 2, 814-825. es_ES
dc.description.references Munim, W.N.W.A., Durán, M.J. Che, H.S, Bermúdez, M. y González-Prieto, I 2016. A unified analysis of the fault tolerance capability in six-phase induction motor drive. IEEE Transactions on Power Electronics. es_ES
dc.description.references Pandit, J.K., Aware, M.V., Nemade, R.V. y Levi, E. 2017. Direct torque control scheme for a six-phase induction motor with reduced torque ripple. IEEE Transactions on Industrial Electronics 32, No. 9, 7118-7129. es_ES
dc.description.references Ren, Y. y Zhu, Z.Q. 2015a. Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Transactions on Industrial Electronics 62, No. 6, 3338-3350. es_ES
dc.description.references Ren, Y. y Zhu, Z.Q. 2015b. Reduction of both harmonic current and torque ripple for dual three-phase permanent-magnet synchronous machine using modified switching-table-based direct torque control. IEEE Transactions on Industrial Electronics 62, No. 11, 6671-6683. es_ES
dc.description.references Ríos-García, N., Durán, M.J., González-Prieto, I., Martín, C. y Barrero, F. 2017. An open-phase fault detection method for six-phase induction motor drives. International Conference on Renewable Energies and Power Quality. es_ES
dc.description.references Riveros, A., Yepes, A.G., Barrero, F., Doval-Gandoy, J., Bogado, B., López, O., Jones, M. y Levi, E. parameter identification of multiphase induction machines with distributed windings-Part 2: time-domain techniques. IEEE Transactions on Energy Conversion 27, No. 4, 1067-1077, 2012. es_ES
dc.description.references Simoes, M.G. y Vieira, P. 2002. A high-torque low-speed multiphase brushless machine - A perspective application for electric vehicles. IEEE Transactions on Industrial Electronics 49, No. 5, 1154-1164. es_ES
dc.description.references Singh, G.K., Nam, K. y Lim, S.K. 2005. A simple indirect field-oriented control scheme for multiphase induction machine. IEEE Transactions on Industrial Electronics 52, No. 4, 1177-1184. es_ES
dc.description.references Smith, S. 2002. Developments in power electronics, machines and drives. IEEE Power Engineering Journal 16, No. 1, 13-17. es_ES
dc.description.references Sudhoff, S.D., Alt, J.T., Hegner, N.J. y Robey, H.N. Jr. 1997. Control of a 15-phase induction motor drive system. Proc. Naval Symp. Electr. Mach., Newport, RI, 69-75. es_ES
dc.description.references Taheri, A. 2016. Harmonic reduction of direct torque control of six-phase induction motor. ISA Transactions 63, 299-314. es_ES
dc.description.references Tani, A., Mengoni, M., Zarri, L., Serra, G. y Casadei, D. 2012. Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics 27, No. 2, 565-577. es_ES
dc.description.references Terrien, F., Siala, S. y Noy, P. 2004. Multiphase induction motor sensorless control for electric ship propulsion. Proc. IEEE PEMD Conference, Edinburgh, U.K., 2, No. 498, 556-561. es_ES
dc.description.references Vukosavic, S., Jones, M., Levi, E. y Varga, J. 2005. Rotor flux oriented control of a symmetrical six-phase induction machine. Electric Power Systes Research 75, No. 2/3, 142-152. es_ES
dc.description.references Yaramasu, V., Dekka, A., Durán, M.J., Kouro, S. y Wu, B. 2017. PMSG-based wind energy conversion systems: survey on power converters and control. IET Electric Power Aplications, 13 pp. es_ES
dc.description.references Yepes, A.G., Malvar, J., Vidal, A., López, O. y Doval-Gandoy, J. 2015. Current harmonic compensation based on multiresonant control in synchronous frame for symmetrical n-phase machines. IEEE Transactions on Industrial Electronics 62, No. 5, 2708-2720. es_ES
dc.description.references Zhao, Y. y Lipo, T.A. 1995. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Transactions on Industry Applications 31, No. 5, 1100-1109. es_ES
dc.description.references Zheng, L., Fletcher, J.E., Williams, B.W. y He, X. 2011. A novel direct torque control scheme for a sensorless five-phase induction motor drive. IEEE Transactions on Industrial Electronics 58, No. 2, 503-513. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem