Mostrar el registro sencillo del ítem
dc.contributor.author | Cervantes, Jair | es_ES |
dc.contributor.author | Taltempa, Jesús | es_ES |
dc.contributor.author | García Lamont, Farid | es_ES |
dc.contributor.author | Ruiz Castilla, José S. | es_ES |
dc.contributor.author | Yee Rendon, Arturo | es_ES |
dc.contributor.author | Jalili, Laura D. | es_ES |
dc.date.accessioned | 2020-05-15T12:30:08Z | |
dc.date.available | 2020-05-15T12:30:08Z | |
dc.date.issued | 2017-01-05 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143398 | |
dc.description.abstract | [EN] The development of vision systems for identifying plants by leaves is an important challenge which has numerous applications ranging from food, medicine, industry and environment. Recently, several techniques have been proposed in the literature in order to identify plants in various fields of application. However, current techniques are restricted to the recognition and identification of plants using specific descriptors. In this paper, is accomplished a comparative analysis using different methods of feature extraction (textural, chromatic and geometric) and different methods of classification. The experiments are executed on very similar plants. Twelve sets of leaves with similar shape characteristics are studied using several classifiers. The performance of different combinations of classifiers-descriptors are analyzed in detail for each set. The results show that a combination of different feature extraction techniques is necessary in order to improve the performance. This combination of descriptors is more necessary when the leaves have similar characteristics. | es_ES |
dc.description.abstract | [ES] El desarrollo de sistemas de identificación de hojas de plantas es un reto actual que comprende numerosas aplicaciones que van desde alimentación, medicina, industria y medio ambiente. En la literatura actual, se han propuesto varias técnicas con el objetivo de identificar plantas en diversos campos de aplicación. Sin embargo, las técnicas actuales están restringidas al reconocimiento e identificación de tipos de plantas limitados, utilizando descriptores de características específicos. En este artículo, se realiza un análisis comparativo de diversos métodos de extracción de características (texturales, cromáticas y geométricas) y clasificacíon sobre conjuntos de plantas muy similares y disimiles entre sí. Doce conjuntos de hojas con características de forma similares son estudiados utilizando varios clasificadores. Se analiza el desempeño de diferentes combinaciones de características en cada conjunto. Los resultados obtenidos muestran que para incrementar el desempeño de los clasificadores estudiados, es necesaria una combinación de las diferentes técnicas de extracción de características, esta necesidad es mayor cuando se trabaja con conjuntos de hojas con características muy similares. Además, se muestra el mejor desempeño de un clasificador con otro. | es_ES |
dc.description.sponsorship | Este estudio fue financiado por la Secretaria de Investigación de la Universidad Autónoma del Estado de México con el proyecto de investigación 3771/2014/CIB. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Descriptors | es_ES |
dc.subject | SVM | es_ES |
dc.subject | Data Sets | es_ES |
dc.subject | Clasificación | es_ES |
dc.subject | Descriptores | es_ES |
dc.subject | Conjuntos de Datos | es_ES |
dc.subject | Características | es_ES |
dc.title | Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta | es_ES |
dc.title.alternative | Comparative Analysis of the Techniques Used in a Recognition System of Plant Leaves | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2016.09.005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UAEM//3771%2F2014%2FCIB/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Cervantes, J.; Taltempa, J.; García Lamont, F.; Ruiz Castilla, JS.; Yee Rendon, A.; Jalili, LD. (2017). Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta. Revista Iberoamericana de Automática e Informática industrial. 14(1):104-114. https://doi.org/10.1016/j.riai.2016.09.005 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2016.09.005 | es_ES |
dc.description.upvformatpinicio | 104 | es_ES |
dc.description.upvformatpfin | 114 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9244 | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.description.references | Asraf M.H., Nooritawati M.T., Shah Rizam M.S.B., 2012. A Comparative Study in Kernel-Based Support Vector Machine of Oil Palm Leaves Nutrient Disease, Procedia Engineering, 41, 1353-1359. DOI: 10.1016/j.proeng.2012.07.321 | es_ES |
dc.description.references | Bernardo J. and Smith A., 1994, Bayesian Theory, Wiley. | es_ES |
dc.description.references | Brandstat A., Van Bang L., 2006. Structure and linear time recognition of 3-leaf ¨ powers, Information Processing Letters, 98(4), 133-138. DOI: 10.1016/j.ipl.2006.01.004 | es_ES |
dc.description.references | Borges J., Bioucas D.J. and Marc¸al A., 2011. Bayesian hyperspectral image segmentation with a discriminative class learning. IEEE Transactions on Geoscience and Remote Sensing; 49(6), 2151-2164. DOI: 10.1109/TGRS.2010.2097268 | es_ES |
dc.description.references | Cerutti G., Tougne L., Mille J., Vacavant A., Coquin D., 2013. Understanding leaves in natural images, A model-based approach for tree species identifi- cation, Computer Vision and Image Understanding, 117(10), 1482-1501. DOI: 10.1016/j.cviu.2013.07.003 | es_ES |
dc.description.references | Chaki, J., Parekh, R., 2012. Designing an automated system for plant leaf recognition, International Journal of Advances in Engineering Technology, 2(1), 149-158. DOI: 10.1.1.667.5253 | es_ES |
dc.description.references | Cope J. S., Corney D., Clark J. Y., Remagnino P., Wilkin P., 2012. Plant species identification using digital morphometrics: A review, Expert Systems with Applications, 39(8), 7562-7573. DOI: 10.1016/j.eswa.2012.01.073 | es_ES |
dc.description.references | Dempster A., Laird N. and Rubin D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistics Society, 1(39),1-38. DOI: 10.2307/2984875 | es_ES |
dc.description.references | Du J.X., Wang X.F., Zhang G.J., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185 (2), 883-893. DOI: 10.1016/j.amc.2006.07.072 | es_ES |
dc.description.references | Du J.X., Zhai Ch.M., Wang Q.P., 2013. Recognition of plant leaf image based on fractal dimension features, Neurocomputing, 116, 150-156. DOI: 10.1016/j.neucom.2012.03.028 | es_ES |
dc.description.references | Flusser, J., Suk, T., 1993. Pattern recognition by affine moment invariants. Pattern Recognition 26(1), 167-174. DOI: 10.1016/0031-3203(93)90098-H | es_ES |
dc.description.references | Gonzalez R.C. and Woods R.E., 2010. Digital Image Processing Using MATLAB, Pearson. | es_ES |
dc.description.references | Gwo Ch.Y., Wei Ch.H., Li Y., 2013. Rotary matching of edge features for leaf recognition, Computers and Electronics in Agriculture, 91, 124-134. DOI: 10.1016/j.compag.2012.12.005 | es_ES |
dc.description.references | Haralick R.M., 1979. Statistical and Structural Approaches to Texture. Proc. IEEE, 67, 786-804. DOI: 10.1109/PROC.1979.11328 | es_ES |
dc.description.references | Haralick R.M., Shanmugam K. and Dinstein I., 1973. Textural Features for Image Classification. IEEE Transactions On System, Man Cybernetics, 6, 610- 621. DOI: 10.1109/TSMC.1973.4309314 | es_ES |
dc.description.references | He D.C. and Wang L., 1990. Texture Unit, Texture Spectrum, And Texture Analysis, Geoscience and Remote Sensing, IEEE Transactions on, 28, 509- 512. DOI: 10.1109/IGARSS.1989.575836 | es_ES |
dc.description.references | Hearn D.J., 2009. Shape analysis for the automated identification of plants from images of leaves, Taxon, 58, 934-954. | es_ES |
dc.description.references | Hu M.K., 1962. Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8, 179-187 DOI: 10.1109/TIT.1962.1057692 | es_ES |
dc.description.references | Hu R., Collomosse J., 2013. A performance evaluation of gradient field HOG descriptor for sketch based image retrieval, Computer Vision and Image Understanding, 117(7), 790-806. DOI: 10.1016/j.cviu.2013.02.005 | es_ES |
dc.description.references | Husin Z., Shakaff A.Y.M., Aziz A.H.A., Farook R.S.M., Jaafar M.N. , Hashim U. , Harun A., 2012. Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm, Computers and Electronics in Agriculture, 89, 18-29. DOI: 10.1016/j.compag.2012.07.009 | es_ES |
dc.description.references | Intelengine.cn. (2016). intelengine.cn. [online], Intelligent Computing Laboratory, Chinese Academy of Sciences Homepage. Disponible en ¡http://www.intelengine.cn/English/dataset¿. | es_ES |
dc.description.references | Jimenez ' M.E., Sanchez A., Carvajal H., Blanco J., Saenz J.C., 2013. Emisi ' on' Acustica ' y Redes Neuronales para Modelado y Caracterizacion del Proceso ' de Soldadura por Friccion Agitaci ' on, ' Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 10(4), 434-440. DOI: 10.1016/j.riai.2013.09.003 | es_ES |
dc.description.references | Kadir, A., Nugroho, L. E., Susanto, A., y Santosa, P.I., 2012. Experiments of distance measurements in a foliage plant retrieval system, International Journal of Signal Processing, Image Processing and Pattern Recognition, 5, 256- 263. | es_ES |
dc.description.references | Kaur, G., y Kaur, G., 2012. Classification of biological species based on leaf architecture, International Journal of Engineering Research and Development, 1,35-42. DOI: 10.1.1.642.4983 | es_ES |
dc.description.references | Larese M., Nam'ıas R., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014, Automatic classification of legumes using leaf vein image features, Pattern Recognition, 47(1), 158-168. DOI: 10.1016/j.patcog.2013.06.012 | es_ES |
dc.description.references | Larese M., Baya A., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014. ' Multiscale recognition of legume varieties based on leaf venation images, Expert Systems with Applications, Volume 41(10), 4638-4647. DOI: 10.1016/j.eswa.2014.01.029 | es_ES |
dc.description.references | Liu J., Liu Y., y Yan C., 2008. Feature extraction technique based on the perceptive invariability, Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 551-554. DOI: 10.1109/fskd.2008.232 | es_ES |
dc.description.references | Ma W., Manjunath B., 1996. Texture features and learning similarity, in: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 425-430. DOI: 10.1109/cvpr.1996.517107 | es_ES |
dc.description.references | Manjunath B. y Ma W., 1996. Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18, 837-842. DOI: 10.1109/34.531803 | es_ES |
dc.description.references | Yang M., Kpalma K. and Ronsin J., 2008. A Survey of Shape Feature Extraction Techniques, Pattern Recognition Techniques, INTECH Open Access Publisher. | es_ES |
dc.description.references | Ng, A.Y.; Jordan, M.I., 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 14, MIT-Press, 841-848. | es_ES |
dc.description.references | Nixon M. y Aguado A., 2002. Feature Extraction and Image Processing, Academic Press. | es_ES |
dc.description.references | Novotny P., Suk T., 2013. Leaf recognition of woody species in Central Europe, ' Biosystems Engineering, 115(4), 444-452. DOI: 10.1016/j.biosystemseng.2013.04.007 | es_ES |
dc.description.references | Kumar N., Belhumeur P.N., Biswas A., 2012. Leafsnap: a computer vision system for automatic plant species identification, in: Proc. ECCV 2012, 502- 516. DOI: 10.1007/978-3-642-33709-336 | es_ES |
dc.description.references | Park J.S., Kim T.-Y., 2004. Shape-based image retrieval using invariant features, in: K. Aizawa, Y. Nakamura, S. Satoh, (Eds.), Advances in Multimedia Information Processing-PCM 2004, Berlin/Heidelberg Lecture Notes in Computer Science, pp. 146-153 DOI: 10.1007/978-3-540-30542-219 | es_ES |
dc.description.references | Portillo E., Cabanes I., Marcos M., Zubizarreta A., 2009. Aplicacion de Redes ' Neuronales en la Deteccion de Reg ' 'ımenes Degradados en el Proceso Wedm, Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 6(1), 39-50. DOI: 10.1016/S1697-7912(09)70075-5 | es_ES |
dc.description.references | Rossomando F.G., Soria C., Carelli R., 2010. Control de Robots Móviles con Incertidumbres Dinamicas usando Redes ' de Base Radial, Revista Iberoamericana de Automática e Informatica ' Industrial RIAI, 7(4), 28-35. DOI: 10.1016/S1697-7912(10)70057-1 | es_ES |
dc.description.references | Rumelhart, D.E.; Hinton, G.E.; Williams, R.J., 1986. Learning representations by back-propagating errors, Nature, 323(6088): 533-536. DOI: 10.1038/323533a0 | es_ES |
dc.description.references | Russell S. y Norvig P., 2003. [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall. | es_ES |
dc.description.references | Sampallo G., 2003. Reconocimiento de tipos de hojas. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(21), 55-62., Asociación Española para la Inteligencia Artificial España. | es_ES |
dc.description.references | Smeulders A.W.M., Worring M, Santini S., Gupta A., Jain R., 2000. Contentbased image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349-1380. DOI: 10.1109/34.895972 | es_ES |
dc.description.references | Sonka M., Hlavac V., Boyle R., 1993. Image Processing, Analysis and Machine Vision, Springer. | es_ES |
dc.description.references | Tico M., Haverinen T., Kuosmanen P., 2000. A method of color histogram creation for image retrieval, in: Proceedings of the Nordic Signal Processing Symposium (NORSIG-2000), Kolmarden, Sweden, 157-160. | es_ES |
dc.description.references | Valverde R., Gachet D., 2007. Identificacion de sistemas din ' amicos ' utilizando redes neuronales RBF, Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 4(2), 32-42. DOI: 10.1016/S1697-7912(07)70207-8 | es_ES |
dc.description.references | Vapnik V., 1995. The Nature of Statistical Learning Theory. Springer. | es_ES |
dc.description.references | Venters C., Cooper D., 2000. A Review of Content-based Image Retrieval Systems, Technical Report, Manchester Visualization Centre, Manchester Computing, University of Manchester, Manchester, UK. | es_ES |
dc.description.references | Wang L. y He D., 1990. Texture Classification Using Texture Spectrum, Pattern Recognition, 23(8), 905-910. DOI: 10.1016/0031-3203(90)90135-8 | es_ES |
dc.description.references | Werbos P.J., 1994. The Roots of Backpropagation. From Ordered Derivatives to Neural Networks and Political Forecasting. New York, NY: John Wiley Sons, Inc. | es_ES |
dc.description.references | Xia Ch., Lee J, Li Y., Song Y., Chung B., Chon T.S., 2013. Plant leaf detection using modified active shape models, Biosystems Engineering, 116(1), 23- 35. DOI: 10.1016/j.biosystemseng.2013.06.003 | es_ES |
dc.description.references | Du J.X., Wang X.F., Zhang G., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185(2), 883-893. DOI: 10.1016/j.amc.2006.07.072 | es_ES |
dc.description.references | Zhang S., Lei Y.K., 2011. Modified locally linear discriminant embedding for plant leaf recognition, Neurocomputing, 74(14), 2284-2290. DOI: 10.1016/j.neucom.2011.03.007 | es_ES |
dc.description.references | Zhang S., Lei Y., Dong T., Zhang X.P., 2013. Label propagation based supervised locality projection analysis for plant leaf classification, Pattern Recognition, 46(7), 1891-1897. DOI: 10.1016/j.patcog.2013.01.015 | es_ES |