- -

Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cervantes, Jair es_ES
dc.contributor.author Taltempa, Jesús es_ES
dc.contributor.author García Lamont, Farid es_ES
dc.contributor.author Ruiz Castilla, José S. es_ES
dc.contributor.author Yee Rendon, Arturo es_ES
dc.contributor.author Jalili, Laura D. es_ES
dc.date.accessioned 2020-05-15T12:30:08Z
dc.date.available 2020-05-15T12:30:08Z
dc.date.issued 2017-01-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143398
dc.description.abstract [EN] The development of vision systems for identifying plants by leaves is an important challenge which has numerous applications ranging from food, medicine, industry and environment. Recently, several techniques have been proposed in the literature in order to identify plants in various fields of application. However, current techniques are restricted to the recognition and identification of plants using specific descriptors. In this paper, is accomplished a comparative analysis using different methods of feature extraction (textural, chromatic and geometric) and different methods of classification. The experiments are executed on very similar plants. Twelve sets of leaves with similar shape characteristics are studied using several classifiers. The performance of different combinations of classifiers-descriptors are analyzed in detail for each set. The results show that a combination of different feature extraction techniques is necessary in order to improve the performance. This combination of descriptors is more necessary when the leaves have similar characteristics. es_ES
dc.description.abstract [ES] El desarrollo de sistemas de identificación de hojas de plantas es un reto actual que comprende numerosas aplicaciones que van desde alimentación, medicina, industria y medio ambiente. En la literatura actual, se han propuesto varias técnicas con el objetivo de identificar plantas en diversos campos de aplicación. Sin embargo, las técnicas actuales están restringidas al reconocimiento e identificación de tipos de plantas limitados, utilizando descriptores de características específicos. En este artículo, se realiza un análisis comparativo de diversos métodos de extracción de características (texturales, cromáticas y geométricas) y clasificacíon sobre conjuntos de plantas muy similares y disimiles entre sí. Doce conjuntos de hojas con características de forma similares son estudiados utilizando varios clasificadores. Se analiza el desempeño de diferentes combinaciones de características en cada conjunto. Los resultados obtenidos muestran que para incrementar el desempeño de los clasificadores estudiados, es necesaria una combinación de las diferentes técnicas de extracción de características, esta necesidad es mayor cuando se trabaja con conjuntos de hojas con características muy similares. Además, se muestra el mejor desempeño de un clasificador con otro. es_ES
dc.description.sponsorship Este estudio fue financiado por la Secretaria de Investigación de la Universidad Autónoma del Estado de México con el proyecto de investigación 3771/2014/CIB. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Classification es_ES
dc.subject Descriptors es_ES
dc.subject SVM es_ES
dc.subject Data Sets es_ES
dc.subject Clasificación es_ES
dc.subject Descriptores es_ES
dc.subject Conjuntos de Datos es_ES
dc.subject Características es_ES
dc.title Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta es_ES
dc.title.alternative Comparative Analysis of the Techniques Used in a Recognition System of Plant Leaves es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.09.005
dc.relation.projectID info:eu-repo/grantAgreement/UAEM//3771%2F2014%2FCIB/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cervantes, J.; Taltempa, J.; García Lamont, F.; Ruiz Castilla, JS.; Yee Rendon, A.; Jalili, LD. (2017). Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta. Revista Iberoamericana de Automática e Informática industrial. 14(1):104-114. https://doi.org/10.1016/j.riai.2016.09.005 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.09.005 es_ES
dc.description.upvformatpinicio 104 es_ES
dc.description.upvformatpfin 114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9244 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.description.references Asraf M.H., Nooritawati M.T., Shah Rizam M.S.B., 2012. A Comparative Study in Kernel-Based Support Vector Machine of Oil Palm Leaves Nutrient Disease, Procedia Engineering, 41, 1353-1359. DOI: 10.1016/j.proeng.2012.07.321 es_ES
dc.description.references Bernardo J. and Smith A., 1994, Bayesian Theory, Wiley. es_ES
dc.description.references Brandstat A., Van Bang L., 2006. Structure and linear time recognition of 3-leaf ¨ powers, Information Processing Letters, 98(4), 133-138. DOI: 10.1016/j.ipl.2006.01.004 es_ES
dc.description.references Borges J., Bioucas D.J. and Marc¸al A., 2011. Bayesian hyperspectral image segmentation with a discriminative class learning. IEEE Transactions on Geoscience and Remote Sensing; 49(6), 2151-2164. DOI: 10.1109/TGRS.2010.2097268 es_ES
dc.description.references Cerutti G., Tougne L., Mille J., Vacavant A., Coquin D., 2013. Understanding leaves in natural images, A model-based approach for tree species identifi- cation, Computer Vision and Image Understanding, 117(10), 1482-1501. DOI: 10.1016/j.cviu.2013.07.003 es_ES
dc.description.references Chaki, J., Parekh, R., 2012. Designing an automated system for plant leaf recognition, International Journal of Advances in Engineering Technology, 2(1), 149-158. DOI: 10.1.1.667.5253 es_ES
dc.description.references Cope J. S., Corney D., Clark J. Y., Remagnino P., Wilkin P., 2012. Plant species identification using digital morphometrics: A review, Expert Systems with Applications, 39(8), 7562-7573. DOI: 10.1016/j.eswa.2012.01.073 es_ES
dc.description.references Dempster A., Laird N. and Rubin D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistics Society, 1(39),1-38. DOI: 10.2307/2984875 es_ES
dc.description.references Du J.X., Wang X.F., Zhang G.J., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185 (2), 883-893. DOI: 10.1016/j.amc.2006.07.072 es_ES
dc.description.references Du J.X., Zhai Ch.M., Wang Q.P., 2013. Recognition of plant leaf image based on fractal dimension features, Neurocomputing, 116, 150-156. DOI: 10.1016/j.neucom.2012.03.028 es_ES
dc.description.references Flusser, J., Suk, T., 1993. Pattern recognition by affine moment invariants. Pattern Recognition 26(1), 167-174. DOI: 10.1016/0031-3203(93)90098-H es_ES
dc.description.references Gonzalez R.C. and Woods R.E., 2010. Digital Image Processing Using MATLAB, Pearson. es_ES
dc.description.references Gwo Ch.Y., Wei Ch.H., Li Y., 2013. Rotary matching of edge features for leaf recognition, Computers and Electronics in Agriculture, 91, 124-134. DOI: 10.1016/j.compag.2012.12.005 es_ES
dc.description.references Haralick R.M., 1979. Statistical and Structural Approaches to Texture. Proc. IEEE, 67, 786-804. DOI: 10.1109/PROC.1979.11328 es_ES
dc.description.references Haralick R.M., Shanmugam K. and Dinstein I., 1973. Textural Features for Image Classification. IEEE Transactions On System, Man Cybernetics, 6, 610- 621. DOI: 10.1109/TSMC.1973.4309314 es_ES
dc.description.references He D.C. and Wang L., 1990. Texture Unit, Texture Spectrum, And Texture Analysis, Geoscience and Remote Sensing, IEEE Transactions on, 28, 509- 512. DOI: 10.1109/IGARSS.1989.575836 es_ES
dc.description.references Hearn D.J., 2009. Shape analysis for the automated identification of plants from images of leaves, Taxon, 58, 934-954. es_ES
dc.description.references Hu M.K., 1962. Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8, 179-187 DOI: 10.1109/TIT.1962.1057692 es_ES
dc.description.references Hu R., Collomosse J., 2013. A performance evaluation of gradient field HOG descriptor for sketch based image retrieval, Computer Vision and Image Understanding, 117(7), 790-806. DOI: 10.1016/j.cviu.2013.02.005 es_ES
dc.description.references Husin Z., Shakaff A.Y.M., Aziz A.H.A., Farook R.S.M., Jaafar M.N. , Hashim U. , Harun A., 2012. Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm, Computers and Electronics in Agriculture, 89, 18-29. DOI: 10.1016/j.compag.2012.07.009 es_ES
dc.description.references Intelengine.cn. (2016). intelengine.cn. [online], Intelligent Computing Laboratory, Chinese Academy of Sciences Homepage. Disponible en ¡http://www.intelengine.cn/English/dataset¿. es_ES
dc.description.references Jimenez ' M.E., Sanchez A., Carvajal H., Blanco J., Saenz J.C., 2013. Emisi ' on' Acustica ' y Redes Neuronales para Modelado y Caracterizacion del Proceso ' de Soldadura por Friccion Agitaci ' on, ' Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 10(4), 434-440. DOI: 10.1016/j.riai.2013.09.003 es_ES
dc.description.references Kadir, A., Nugroho, L. E., Susanto, A., y Santosa, P.I., 2012. Experiments of distance measurements in a foliage plant retrieval system, International Journal of Signal Processing, Image Processing and Pattern Recognition, 5, 256- 263. es_ES
dc.description.references Kaur, G., y Kaur, G., 2012. Classification of biological species based on leaf architecture, International Journal of Engineering Research and Development, 1,35-42. DOI: 10.1.1.642.4983 es_ES
dc.description.references Larese M., Nam'ıas R., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014, Automatic classification of legumes using leaf vein image features, Pattern Recognition, 47(1), 158-168. DOI: 10.1016/j.patcog.2013.06.012 es_ES
dc.description.references Larese M., Baya A., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014. ' Multiscale recognition of legume varieties based on leaf venation images, Expert Systems with Applications, Volume 41(10), 4638-4647. DOI: 10.1016/j.eswa.2014.01.029 es_ES
dc.description.references Liu J., Liu Y., y Yan C., 2008. Feature extraction technique based on the perceptive invariability, Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 551-554. DOI: 10.1109/fskd.2008.232 es_ES
dc.description.references Ma W., Manjunath B., 1996. Texture features and learning similarity, in: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 425-430. DOI: 10.1109/cvpr.1996.517107 es_ES
dc.description.references Manjunath B. y Ma W., 1996. Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18, 837-842. DOI: 10.1109/34.531803 es_ES
dc.description.references Yang M., Kpalma K. and Ronsin J., 2008. A Survey of Shape Feature Extraction Techniques, Pattern Recognition Techniques, INTECH Open Access Publisher. es_ES
dc.description.references Ng, A.Y.; Jordan, M.I., 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 14, MIT-Press, 841-848. es_ES
dc.description.references Nixon M. y Aguado A., 2002. Feature Extraction and Image Processing, Academic Press. es_ES
dc.description.references Novotny P., Suk T., 2013. Leaf recognition of woody species in Central Europe, ' Biosystems Engineering, 115(4), 444-452. DOI: 10.1016/j.biosystemseng.2013.04.007 es_ES
dc.description.references Kumar N., Belhumeur P.N., Biswas A., 2012. Leafsnap: a computer vision system for automatic plant species identification, in: Proc. ECCV 2012, 502- 516. DOI: 10.1007/978-3-642-33709-336 es_ES
dc.description.references Park J.S., Kim T.-Y., 2004. Shape-based image retrieval using invariant features, in: K. Aizawa, Y. Nakamura, S. Satoh, (Eds.), Advances in Multimedia Information Processing-PCM 2004, Berlin/Heidelberg Lecture Notes in Computer Science, pp. 146-153 DOI: 10.1007/978-3-540-30542-219 es_ES
dc.description.references Portillo E., Cabanes I., Marcos M., Zubizarreta A., 2009. Aplicacion de Redes ' Neuronales en la Deteccion de Reg ' 'ımenes Degradados en el Proceso Wedm, Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 6(1), 39-50. DOI: 10.1016/S1697-7912(09)70075-5 es_ES
dc.description.references Rossomando F.G., Soria C., Carelli R., 2010. Control de Robots Móviles con Incertidumbres Dinamicas usando Redes ' de Base Radial, Revista Iberoamericana de Automática e Informatica ' Industrial RIAI, 7(4), 28-35. DOI: 10.1016/S1697-7912(10)70057-1 es_ES
dc.description.references Rumelhart, D.E.; Hinton, G.E.; Williams, R.J., 1986. Learning representations by back-propagating errors, Nature, 323(6088): 533-536. DOI: 10.1038/323533a0 es_ES
dc.description.references Russell S. y Norvig P., 2003. [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall. es_ES
dc.description.references Sampallo G., 2003. Reconocimiento de tipos de hojas. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(21), 55-62., Asociación Española para la Inteligencia Artificial España. es_ES
dc.description.references Smeulders A.W.M., Worring M, Santini S., Gupta A., Jain R., 2000. Contentbased image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349-1380. DOI: 10.1109/34.895972 es_ES
dc.description.references Sonka M., Hlavac V., Boyle R., 1993. Image Processing, Analysis and Machine Vision, Springer. es_ES
dc.description.references Tico M., Haverinen T., Kuosmanen P., 2000. A method of color histogram creation for image retrieval, in: Proceedings of the Nordic Signal Processing Symposium (NORSIG-2000), Kolmarden, Sweden, 157-160. es_ES
dc.description.references Valverde R., Gachet D., 2007. Identificacion de sistemas din ' amicos ' utilizando redes neuronales RBF, Revista Iberoamericana de Automatica ' e Informatica ' Industrial RIAI, 4(2), 32-42. DOI: 10.1016/S1697-7912(07)70207-8 es_ES
dc.description.references Vapnik V., 1995. The Nature of Statistical Learning Theory. Springer. es_ES
dc.description.references Venters C., Cooper D., 2000. A Review of Content-based Image Retrieval Systems, Technical Report, Manchester Visualization Centre, Manchester Computing, University of Manchester, Manchester, UK. es_ES
dc.description.references Wang L. y He D., 1990. Texture Classification Using Texture Spectrum, Pattern Recognition, 23(8), 905-910. DOI: 10.1016/0031-3203(90)90135-8 es_ES
dc.description.references Werbos P.J., 1994. The Roots of Backpropagation. From Ordered Derivatives to Neural Networks and Political Forecasting. New York, NY: John Wiley Sons, Inc. es_ES
dc.description.references Xia Ch., Lee J, Li Y., Song Y., Chung B., Chon T.S., 2013. Plant leaf detection using modified active shape models, Biosystems Engineering, 116(1), 23- 35. DOI: 10.1016/j.biosystemseng.2013.06.003 es_ES
dc.description.references Du J.X., Wang X.F., Zhang G., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185(2), 883-893. DOI: 10.1016/j.amc.2006.07.072 es_ES
dc.description.references Zhang S., Lei Y.K., 2011. Modified locally linear discriminant embedding for plant leaf recognition, Neurocomputing, 74(14), 2284-2290. DOI: 10.1016/j.neucom.2011.03.007 es_ES
dc.description.references Zhang S., Lei Y., Dong T., Zhang X.P., 2013. Label propagation based supervised locality projection analysis for plant leaf classification, Pattern Recognition, 46(7), 1891-1897. DOI: 10.1016/j.patcog.2013.01.015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem