- -

Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales

Show simple item record

Files in this item

dc.contributor.author Alonso Zotes, F. es_ES
dc.contributor.author Santos Peñas, M. es_ES
dc.date.accessioned 2020-05-15T13:10:16Z
dc.date.available 2020-05-15T13:10:16Z
dc.date.issued 2017-01-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143414
dc.description.abstract [EN] In this paper, heuristic optimization of interplanetary trajectories is presented. These techniques have been applied over the last two decades to the successful design of space missions in order to increase the scientific results. The multi-objective optimization problem has been solved finding a trade-off between minimizing the fuel and maximizing the useful payload of the scientific mission. A review of the literature related to the application of some evolutive strategies such as Genetic Algorithms and Differential Evolution, and Particle Swarm Optimization methods, to aerospace applications is included, in particular for the design of interplanetary exploration missions with gravity assistances. A detailed example is included to show the application of multiobjetive optimization (MOPSO) to determine the interplanetary trajectory from the Earth to the Kuiper Belt with flybys in Mars, Jupiter and Saturn. es_ES
dc.description.abstract [ES] En este trabajo se presenta la optimización heurística como una metodología que permite automatizar el diseño de las rutas interplanetarias con asistencias gravitacionales para conseguir una mayor rentabilidad, en términos científicos, de las exploraciones espaciales. Se trata de un problema de optimización multiobjetivo donde se busca un compromiso entre la minimización de la masa destinada a combustible y la maximización de la carga útil y científica de la misión aeroespacial. Las técnicas de optimización evolutiva han sido aplicadas con éxito a estos problemas de diseño de trayectorias complejas. Se incluye una revisión de algunas de las principales técnicas de optimización heurística que se han utilizado en el ámbito aeroespacial: GA (Genetic Algorithms), PSO (Particle Swarm Optimization) y MOPSO (Multiobjective particle swarm optimization), en concreto para el diseño de misiones de exploración interplanetaria con asistencias gravitacionales, realizadas por numerosos autores. Finalmente se presenta a modo de ejemplo una aplicación concreta de optimización multiobjetivo mediante MOPSO para determinar una trayectoria interplanetaria desde la Tierra con asistencias al cinturón de Kuiper. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Heuristic optimization es_ES
dc.subject Interplanetary trajectories es_ES
dc.subject Gravity assistance es_ES
dc.subject Fly-by es_ES
dc.subject Aerospace mission es_ES
dc.subject GA es_ES
dc.subject PSO es_ES
dc.subject MOPSO es_ES
dc.subject Optimización heurística es_ES
dc.subject Trayectorias interplanetarias es_ES
dc.subject Asistencias gravitacionales es_ES
dc.subject Aplicaciones aeroespaciales es_ES
dc.title Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales es_ES
dc.title.alternative Heuristic Optimization of Interplanetary Trajectories in Aerospace Missions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.07.006
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alonso Zotes, F.; Santos Peñas, M. (2017). Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales. Revista Iberoamericana de Automática e Informática industrial. 14(1):1-15. https://doi.org/10.1016/j.riai.2016.07.006 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.07.006 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9227 es_ES
dc.description.references F. Alonso, M. Santos, 2008. GA Optimization of the height of a low earth orbit En: Computational Intelligence in Decision and Control, World Scientific (2008), pp.719-724 es_ES
dc.description.references F. Alonso, M. Santos, 2010a. Multi-criteria Genetic Optimisation of the Manoeuvres of a Two-Stage Launcher Information Sciences, 180 (6) (2010 a), pp. 896- 910, 10.1016/j.ins.2009.11.001 es_ES
dc.description.references F. Alonso, M. Santos. 2010b. Delta-V genetic optimisation of a trajectory from Earth to Saturn with fly-by in Mars En: Evolutionary Computation (CEC), 2010, IEEE Congress on (2010 b), pp. 1-6 es_ES
dc.description.references F. Alonso, M. Santos. 2010c. Genetic Optimization of an Interplanetary Trajectory from Earth to Jupiter D. Ruan, T. Li, Y. Xu (Eds.), En: Computational Intelligence Foundations and Applications: Proc. 9th Int. FLINS Conf, 4, World Scientific, Chengdu, China (2010 c) 2-4 August 2010 es_ES
dc.description.references F. Alonso-Zotes, M. Santos-Peñas From Earth to Kuiper belt: swarm optimisation algorithm applied to interplanetary missions En: Proceedings of the WPP-308, 4th International Conference on Astrodynamics Tools and Techniques ICATT, Madrid, Spain (2010 d), pp. 3-6 es_ES
dc.description.references F. Alonso Zotes, M. Santos Peñas Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn Engineering Applications of Artificial Intelligence, 25 (1) (2012), pp. 189-199, 10.1016/j.engappai.2011.09.005 es_ES
dc.description.references R. Armellin, P. Di Lizia, K. Makino, M. Berz Rigorous global optimization of impulsive planet-to-planet transfers in the patched-conics approximation Engineering Optimization, 44 (2) (2012), pp. 133-155, 10.1080/0305215X. 2011.570757 es_ES
dc.description.references R.R. Bate, D.D. Mueller, J.E. WhiteFundamentals Astrodynamics Dover Publications, New York, NY (1971) es_ES
dc.description.references S. Campagnola, B.B. Buffington, A.E. Petropoulos. Jovian tour design for orbiter and lander missions to Europa Acta Astronautica, 100 (2014), pp. 68-81, 10.1016/j.actaastro.2014.02.005 es_ES
dc.description.references E.Y. Choueiri. New Dawn for Electric Rockets. Scientific American, 300 (2009), pp. 58-65, 10.1038/scientificamerican0209-58 es_ES
dc.description.references B. Dachwald. Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astronautica, 57 (2) (2005), pp. 175-185, 10.1016/j.actaastro.2005.03.004 es_ES
dc.description.references S. Das, P.N. Suganthan. Differential evolution: a survey of the stateof-the-art. Evolutionary Computation, IEEE Transactions on, 15 (1) (2011), pp. 4-31, 10.1109/TEVC. 2010.2059031 es_ES
dc.description.references K. Deb. Multi-objective optimization. In Search methodologies, Springer US (2014), pp. 403-449 es_ES
dc.description.references R.C. Eberhart, Y. Shi. Comparison between genetic algorithms and particle swarm optimization. En: Evolutionary Programming VII, Springer Berlin Heidelberg (1998), pp. 611-616 es_ES
dc.description.references ESA, 2014. Rosetta. http://sci.esa.int/rosetta es_ES
dc.description.references ESA, 2016. BepiColombo. http://sci.esa.int/bepicolombo es_ES
dc.description.references C.M. Fonseca, P.J. Fleming. Multiobjective optimization and multiple constraints handling with evolutionary algorithms-part I: A unified formulation. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 28 (1) (1998), pp. 26-37, 10.1109/3468.650319 es_ES
dc.description.references D.E. Goldberg. Genetic algorithms in search, optimizacion and machine learning. Adisson-Wesley, MA (1989) es_ES
dc.description.references P.G. Hill, C.R. Peterson. Mechanics and thermodynamics of propulsión. (2nd edition), Addison-Wesley Publishing Co, Reading, MA (1992) es_ES
dc.description.references X. Hu, R.C. Eberhart. Multiobjective Optimization using Dynamic Neighborhood Particle Swarm Optimization. En: WCCI, Congress on Evolutionary Computation, IEEE (2002), pp. 1677-1681 es_ES
dc.description.references D. Izzo. Lambert's problem for exponential sinusoids. Journal of guidance, control, and dynamics, 29 (5) (2006), pp. 1242-1245, 10.2514/1.21796 es_ES
dc.description.references D. Izzo, V.M. Becerra, D.R. Myatt, S.J. Nasuto, J.M. Bishop. Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. Journal of Global Optimization, 38 (2) (2007), pp. 283-296, 10.1007/s10898-006-9106-0 es_ES
dc.description.references D. Izzo, L.F. Simões, M. Märtens, G.C. de Croon, A. Heritier, C.H. Yam. Search for a grand tour of the Jupiter Galilean moons. In Proc. 15th Annual Conference on Genetic and Evolutionary Computation, ACM (2013), pp. 1301-1308 es_ES
dc.description.references D. Izzo. Global optimization and space pruning for spacecraft trajectory design. B.A. Conway (Ed.), Spacecraft Trajectory Optimization, 1, Cambridge University Press, Cambridge (2010), pp. 178-200 es_ES
dc.description.references JAXA, 2016. Japan Aerospace Exploration Agency. http://global.jaxa.jp/projects/sat/ikaros/ es_ES
dc.description.references Johnson, L., Young, R., Alhorn, D., Heaton, A., Vansant, T., Campbell, B., Pappa, R., Keats, W., Liewer, P.C., Alexander, D., Ayon, J., Wawrzyniak, G., Burton, R., Carroll, D., Matloff, G., Kezerashvili, R.Y., 2010. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics. arXiv: 1012.5250. es_ES
dc.description.references J. Kennedy, R.C. Eberhart. Swarm Intelligence. Academic Press, San Diego (2001) es_ES
dc.description.references K.W. Kloster, A.E. Petropoulos, J.M. Longuski. Europa Orbiter tour design with Io gravity assists. Acta Astronautica, 68 (7) (2011), pp. 931-946, 10.1016/j.actaastro.2010.08.041 es_ES
dc.description.references X. Li. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function. En: Genetic and Evolutionary Computation-GECCO 2004, Springer Berlin Heidelberg(2004), pp. 117-128 es_ES
dc.description.references A.E. Lynam. Broad-search algorithms for the spacecraft trajectory design of Callisto-Ganymede-Io triple flyby sequences from 2024 to 2040. Part I: Heuristic pruning of the search space. Acta Astronautica, 94 (1) (2014), pp. 246-252 es_ES
dc.description.references A.E. Lynam. Broad-search algorithms for the spacecraft trajectory design of Callisto-Ganymede-Io triple flyby sequences from 2024 to 2040. Part II: Lambert pathfinding and trajectory solutions. Acta Astronautica, 94 es_ES
dc.description.references (1) (2014), pp. 253-261, 10.1016/j.actaastro.2013.07.018 es_ES
dc.description.references A.E. Lynam. Broad-search algorithms for finding triple-and quadruple-satellite-aided captures at Jupiter from 2020 to 2080. Celestial Mechanics and Dynamical Astronomy, 121 es_ES
dc.description.references (4) (2015), pp. 347-363, 10.1016/j.actaastro.2013.07.020 es_ES
dc.description.references M. Macdonald (Ed.), Advances in Solar Sailing., Springer Praxis, Chichester (2014) es_ES
dc.description.references F.J. Marín Martín, F. García Lagos, F. Sandoval Hernández. Algoritmos Genéticos: una estrategia para la búsqueda y la optimización. Informática y Automática, 25 (3) (1992), pp. 5-15 es_ES
dc.description.references K. Makino. Rigorous analysis of nonlinear motion in particle accelerators. Doctoral dissertation, Michigan State University, East Lansing, Michigan, USA (1998) es_ES
dc.description.references T.T. McConaghy, T.J. Debban, A.E. Petropoulos, J.M. Longuski. Design and optimization of low-thrust trajectories with gravity assists. Journal of spacecraft and rockets, 40 (3) (2003), pp. 380-387, 10.2514/2.3973 es_ES
dc.description.references M. Minovitch. A method for determining interplanetary free-fall reconnaissance trajectories. Jet Propulsion Laboratory Technical Memo TM-312-130 (1961), pp. 38-44 es_ES
dc.description.references NASA, 1998. Deep Space 1. National Aeronautics and Space Administration. http://science.nasa.gov/missions/deep-space-1/ es_ES
dc.description.references A. Ohndorf, B. Dachwald. InTrance -A Tool for Multi-Objective Multi-Phase Low-Thrust Trajectory Optimization. Proceedings of the WPP-308. 4th International Conference on Astrodynamics Tools and Techniques ICATT, Madrid, Spain (2010) es_ES
dc.description.references P.D. Pascale, M.Vasile. Preliminary design of low-thrust multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 43 (5) (2006), pp. 1065-1076, 10.2514/1.19646 es_ES
dc.description.references S.M. Pessina, S. Campagnola, M. Vasile. Preliminary analysis of interplanetary trajectories with aerogravity and gravity assist manoeuvres. In Proceedings of 54th International Astronautical Congress, Bremen, Germany (2003), pp. 1-11 es_ES
dc.description.references A.E. Petropoulos, J.M. Longuski. Shape-Based algorithm for automated design of low-thrust, gravity-assist trajectories, Journal of Spacecraft and Rockets. 41 (5) (2004), pp. 787-796, 10.2514/1.13095 es_ES
dc.description.references M. Reyes-Sierra, C.A. Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research (2006), pp. 287-308 doi=10.1.1.138.1829 es_ES
dc.description.references S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau, G.Drake. Ionic Liquids as Hypergolic Fuels. Energy Fuels, 22 (4) (2008), pp. 2871-2872, 10.1021/ef800286b es_ES
dc.description.references O. Schütze, M. Vasile, O. Junge, M. Dellnitz, D. Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 41 (2) (2009), pp. 155-181, 10.1080/03052150802391734 es_ES
dc.description.references E.M. Standish, J.C. Williams. Orbital ephemerides of the sun, moon and planets (PDF). Int Astron Union Comm (2010), p. 4 es_ES
dc.description.references M. Vasile, E. Minisci, M. Locatelli. Analysis of some global optimization algorithms for space trajectory design. Journal of Spacecraft and Rockets, 47 (2) (2010), pp. 334-344, 10.2514/1.45742 es_ES
dc.description.references M. Vasile, P.D. Pascale. Preliminary design of multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 43 (4) (2006), pp. 794-805, 10.2514/1.17413 es_ES
dc.description.references M. Vasile, L. Summerer, P.D. Pascale. Design of Earth-Mars transfer trajectories using evolutionary-branching technique. Acta Astronautica, 56 (2005), pp. 705-720, 10.1016/j.actaastro.2004.12.002 es_ES
dc.description.references T. Vinko, D. Izzo. Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. Technical report, European Space Agency, the Advanced Concepts Team (2008) es_ES
dc.description.references S. Wang, H. Shang, W. Wu. Interplanetary transfers employing invariant manifolds and gravity assist between periodic orbits. Science China Technological Sciences, 56 (3) (2013), pp. 786-794, 10.1007/s11431-013-5133-5 es_ES
dc.description.references N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R.Floberghagen. The GOCE Ion Propulsion Assembly - Lessons Learnt from the First 22 Months of Flight Operations. En: Proc of the 32nd International Electric Propulsion Conf, Wiesbaden (Germany) (2011), pp. 1-21 es_ES
dc.description.references D. Whitley, S. Dominic, R. Das, C.W. Anderson. Genetic reinforcement learning for neurocontrol problems. Springer US (1994), pp. 103-128, 10.1007/978-1-4615-2740-4_5 es_ES
dc.description.references K. Zhu, R. Zhang, D. Xu, J. Wang, S. Li. Venus round trip using solar sail. Science China Physics, Mechanics and Astronomy, 55 (8) (2012), pp. 1485-1499, 10.1007/s11433-012-4792-8 es_ES
dc.description.references E. Zitzler, L. Thiele, K. Deb. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8 (2) (2000), pp. 173-195, 10.1162/106365600568202 es_ES


This item appears in the following Collection(s)

Show simple item record