- -

Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables

Show simple item record

Files in this item

dc.contributor.author Bonilla, Javier es_ES
dc.contributor.author Roca, Lidia es_ES
dc.contributor.author de la Calle, Alberto es_ES
dc.contributor.author Dormido, Sebastián es_ES
dc.date.accessioned 2020-05-15T13:16:09Z
dc.date.available 2020-05-15T13:16:09Z
dc.date.issued 2017-01-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143416
dc.description.abstract [ES] En este artículo se presenta un modelo dinámico para un recuperador de gases - sales fundidas incluido en una planta de demostración de una tecnología de hibridación de plantas termosolares con otras fuentes de energías renovables. Tanto el demostrador como el modelo se han desarrollado en el ámbito del proyecto HYSOL. Este trabajo describe brevemente dicho proyecto, su tecnología, demostrador y principalmente el modelo dinámico del recuperador, cuyo estado estacionario ha sido comparado con los cálculos de diseño. El artículo se completa con simulaciones dinámicas donde se estudia la convergencia del modelo, la contribución de los distintos procesos físicos a la transferencia de calor y el impacto de las condiciones ambientales a las pérdidas térmicas. es_ES
dc.description.abstract [EN] In this paper, a dynamic model of a molten salt -gas heat recovery system of a demonstrator for a hybrid renewable solar thermal power plant, developed in the scope of the HYSOL project, is presented. This work describes briefly the HYSOL project, its technology, the demonstrator and mainly the developed heat recovery system dynamic model; its steady state has been compared to the expected results from plant design calculations. This paper is completed with dynamic simulations where, the model convergence is studied, the contribution of the different heat transfer processes is analyzed, and the impact of the environment conditions to thermal losses is evaluated. es_ES
dc.description.sponsorship Este trabajo ha sido financiado con el proyecto HYSOL del Séptimo Programa Marco de la Unión Europea (FP7/2013-2016) según el acuerdo de subvención número 308912. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Thermal storage es_ES
dc.subject Concentrating solar power es_ES
dc.subject Steam turbine es_ES
dc.subject Gas turbine es_ES
dc.subject Modelica es_ES
dc.subject Almacenamiento térmico es_ES
dc.subject Energía solar de concentración es_ES
dc.subject Turbina de vapor es_ES
dc.subject Turbina de gas es_ES
dc.title Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables es_ES
dc.title.alternative Dynamic Model of a Molten Salt -Gas Heat Recovery System for a Hybrid Renewable Solar Thermal Power Plant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.11.003
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/308912/EU/INNOVATIVE CONFIGURATION FOR A FULLY RENEWABLE HYBRID CSP PLANT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bonilla, J.; Roca, L.; De La Calle, A.; Dormido, S. (2017). Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables. Revista Iberoamericana de Automática e Informática industrial. 14(1):70-81. https://doi.org/10.1016/j.riai.2016.11.003 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.11.003 es_ES
dc.description.upvformatpinicio 70 es_ES
dc.description.upvformatpfin 81 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9238 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references ACS/Cobra T&I channel, 2015. Proyecto HYSOL. URL: https://www.youtube.com/watch?v=i69s5zWkVzM es_ES
dc.description.references Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., Sep. 2012. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Solar Energy 86 (9), 2293-2305. es_ES
dc.description.references Bohtz, C., Gokarn, S., Conte, E., 2013. Integrated Solar Combined Cycles (ISCC) to Meet Renewable Targets and Reduce CO2 Emissions. In: PowerGen Europe. Vienna, Austria, p. 20. es_ES
dc.description.references Bonilla, J., de la Calle, A., Rodríguez-García, M.-M., Roca, L., Valenzuela, L., 2015a. Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger. In: Proc. 11th International Modelica Conference. Versailles, France, pp. 873-882. es_ES
dc.description.references Bonilla, J., Roca, L., Cerrajero, E., Mirabal, S., Padilla, S., Rocha, A. R., 2016. Operation and Training Tool for a Gas - Molten Salt Heat Recovery Demonstrator Facility. Procedia Computer Science 00. es_ES
dc.description.references Bonilla, J., Rodríguez-García, M.-M., Roca, L., Valenzuela, L., 2015b. ObjectOriented Modeling of a Multi-Pass Shell-and-Tube Heat Exchanger and its Application to Performance Evaluation. In: 1st Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON). SaintPetersburg, Russia, pp. 107-112. es_ES
dc.description.references Casella, F., Otter, M., Proelss, K., Richter, C., Tummescheit, H., 2006. The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. In: Proc. 5th International Modelica Conference. Vienna, Austria, pp. 631-640. es_ES
dc.description.references Çengel, Y. A., 2006. Heat Transfer: A Practical Approach (3rd edition). McGraw-Hill series in mechanical engineering. McGraw-Hill. es_ES
dc.description.references Consorcio Proyecto HYSOL, 2013. Proyecto HYSOL Website. URL: http://www.hysolproject.eu es_ES
dc.description.references Dassault Systemes, 2015. Dymola 2016 FD01 - Multi-Engineering Modeling and Simulation. URL: http://www.dymola.com es_ES
dc.description.references Dittus, F. W., Boelter, L. M. K., 1930. Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering 2 (1), 443-461. es_ES
dc.description.references Ferri, R., Cammi, A., Mazzei, D., Dec. 2008. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications. International Journal of Thermal Sciences 47 (12), 1676-1687. es_ES
dc.description.references Ganapathy, V., 2003. Industrial boilers and heat recovery steam generators : design, applications, and calculations. Marcel Dekker, New York. es_ES
dc.description.references Gnielinski, V., 1976. New equations for heat and mass transfer in turbulent pipe flow and channel flow. International Chemical Engineering 2 (16), 359-368. es_ES
dc.description.references Haaland, S., 1983. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal of Fluids Engineering 105 (1), 89-90. es_ES
dc.description.references Idelchik, I. E., 2006. Handbook of hydraulic resistance (3rd edition). es_ES
dc.description.references Kawaguchi, K., Okui, K., Kashi, T., 2005. Heat Transfer and Pressure Drop Characteristics of Finned Tube Banks in Forced Convection (Comparison of Heat Transfer and Pressure Drop Characteristics of Serrated and Spiral Fins). Journal of Enhanced Heat Transfer 12 (1), 1-20. es_ES
dc.description.references Mcbride, B. J., Zehe, M. J., Gordon, S., 2002. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (September), 297. es_ES
dc.description.references Miller, D. S., 1984. Internal Flow Systems (2nd edition). BHRA Fluid Engineering series. BHRA, Fluid Engineering Centre. es_ES
dc.description.references Modak, A. T., 1978. Radiation from Products of Combustion. Fire Research 1, 339-361. es_ES
dc.description.references Modelica Association, 2012. Modelica - A Unified Object-Oriented Language for Systems Modeling - Language Specification 3.3. https://www.modelica.org/libraries/Modelica. URL: http://www.modelica.org/documents es_ES
dc.description.references Moody, L. F., 1944. Friction factors for pipe flow. Transactions of the ASME 66, 671-684. es_ES
dc.description.references National Renewable Energy Laboratory, U. D. o. E., 2009. Solar Advisor Model. Tech. rep. URL: https://www.nrel.gov/analysis/sam/pdfs/ sam csp refe rence manual 3.0.pdf es_ES
dc.description.references Nir, A., 1991. Heat Transfer and Friction Factor Correlations for Crossflow over Staggered Finned Tube Banks. Heat Transfer Engineering 12 (1), 43-58. es_ES
dc.description.references Patankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington,D.C. es_ES
dc.description.references Petukhov, B. S., 1970. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. Advances in Heat Transfer 6 (C), 504-564. es_ES
dc.description.references Petzold, L. R., 1983. A description of DASSL: a Diferential/Algebraic System Solver. Scientific Computing, 65-68. es_ES
dc.description.references Rhie, C. M., Chow, W. L., Nov. 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. The American Institute of Aeronautics and Astronautics Journal 21, 1525-1532. es_ES
dc.description.references Richter, C., 2008. Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. Ph.D. thesis, Technische Universitat¨ Carolo-Wilhelmina zu Braunschweig, Germany. es_ES
dc.description.references Roca, L., Bonilla, J., Rodr'ıguez-Garc'ıa, M.-M., Palenzuela, P., de la Calle, A., Valenzuela, L., 2015. Control strategies in a thermal oil - molten salt heat exchanger. In: 21st SolarPACES Conference. es_ES
dc.description.references Servert, J., Cerrajero, E., Lopez, ' D., Yague, ¨ S., Gutierrez, F., Lasheras, M., Miguel, G. S., 2015. Base Case Analysis of a HYSOL Power Plant. In: Energy Procedia. Vol. 69. Beijing, China, pp. 1152-1159. DOI: 10.1016/j.egypro.2015.03.187 es_ES
dc.description.references Thermoflow Inc., 2015. ThermoFlex - Fully-flexible design and simulation of combined cycles, cogeneration systems, and other thermal power systems. URL: http://www.thermoflow.com es_ES
dc.description.references Weierman, C., 1976. Correlations Ease the Selection of Finned Tubes. The Oil and Gas Journal 74 (36), 94-100. es_ES
dc.description.references Wetter, M., 2013. Modelica Buildings Library - A free open-source library for building energy and control systems. URL: http://simulationresearch.lbl.gov/modelica es_ES
dc.description.references Zaversky, F., Garc'ıa-Barberena, J., Sanchez, M., Astrain, D., Jul. 2013. ' Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Solar Energy 93, 294-311. es_ES
dc.description.references Zavoico, A. B., 2001. Solar Power Tower - Design Basis Document. Tech. Rep. July, Sandia National Laboratories, Albuquerque, USA. es_ES


This item appears in the following Collection(s)

Show simple item record