- -

Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus

Mostrar el registro completo del ítem

Corral Martínez, P.; Driouich, A.; Seguí-Simarro, JM. (2019). Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.00332

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143434

Ficheros en el ítem

Metadatos del ítem

Título: Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus
Autor: Corral Martínez, Patricia Driouich, Azeddine Seguí-Simarro, Jose M.
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] Microspore embryogenesis is a manifestation of plant cell totipotency whereby new cell walls are formed as a consequence of the embryogenic switch. In particular, the callose-rich subintinal layer created immediately ...[+]
Palabras clave: Andiugenesis , Cell wall , Doubled haploid , Electron microscopy , Immunogold labeling , Rapeseed
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2019.00332
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2019.00332
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/
Agradecimientos:
This work was supported by grant AGL2017-88135-R to JS-S from Spanish MINECO jointly funded by FEDER. AD would like to thank the University of Rouen and Normandie Regional Council (France) for financial support.
Tipo: Artículo

References

Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392

Daher, F. B., & Braybrook, S. A. (2015). How to let go: pectin and plant cell adhesion. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00523

Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., … Keegstra, K. (2008). Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component. The Plant Cell, 20(6), 1519-1537. doi:10.1105/tpc.108.059873 [+]
Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392

Daher, F. B., & Braybrook, S. A. (2015). How to let go: pectin and plant cell adhesion. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00523

Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., … Keegstra, K. (2008). Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component. The Plant Cell, 20(6), 1519-1537. doi:10.1105/tpc.108.059873

Chapman, A., Blervacq, A.-S., Hendriks, T., Slomianny, C., Vasseur, J., & Hilbert, J.-L. (2000). Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalization on chicory embryos. Canadian Journal of Botany, 78(6), 824-831. doi:10.1139/b00-060

Cheung, A. Y., & Wu, H.-M. (1999). Arabinogalactan proteins in plant sexual reproduction. Protoplasma, 208(1-4), 87-98. doi:10.1007/bf01279078

Corral-Martínez, P., García-Fortea, E., Bernard, S., Driouich, A., & Seguí-Simarro, J. M. (2016). Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development inBrassica napus. Plant and Cell Physiology, 57(10), 2161-2174. doi:10.1093/pcp/pcw133

Corral-Martínez, P., Nuez, F., & Seguí-Simarro, J. M. (2010). Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica, 178(2), 215-228. doi:10.1007/s10681-010-0303-z

Corral-Martínez, P., & Seguí-Simarro, J. M. (2013). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195(3), 369-382. doi:10.1007/s10681-013-1001-4

Cosgrove, D. J. (1997). ASSEMBLY AND ENLARGEMENT OF THE PRIMARY CELL WALL IN PLANTS. Annual Review of Cell and Developmental Biology, 13(1), 171-201. doi:10.1146/annurev.cellbio.13.1.171

Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. doi:10.1038/nrm1746

Custers, J. B. M. (2003). Microspore culture in rapeseed (Brassica napus L.). Doubled Haploid Production in Crop Plants, 185-193. doi:10.1007/978-94-017-1293-4_29

P. Darley, C., M. Forrester, A., & J. McQueen-Mason, S. (2001). Plant Molecular Biology, 47(1/2), 179-195. doi:10.1023/a:1010687600670

Duchow, S., Dahlke, R. I., Geske, T., Blaschek, W., & Classen, B. (2016). Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides. Carbohydrate Polymers, 152, 149-155. doi:10.1016/j.carbpol.2016.07.015

El-Tantawy, A.-A., Solís, M.-T., Da Costa, M. L., Coimbra, S., Risueño, M.-C., & Testillano, P. S. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reproduction, 26(3), 231-243. doi:10.1007/s00497-013-0217-8

Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan. Plant Physiology, 113(4), 1405-1412. doi:10.1104/pp.113.4.1405

Kikuchi, A., Satoh, S., Nakamura, N., & Fujii, T. (1995). Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli. Plant Cell Reports, 14(5). doi:10.1007/bf00232028

Knox, J. P., Linstead, P., King, J., Cooper, C., & Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 181(4). doi:10.1007/bf00193004

Knox, J. ., Linstead, P. ., Cooper, J. P. C., & Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. The Plant Journal, 1(3), 317-326. doi:10.1046/j.1365-313x.1991.t01-9-00999.x

Lamport, D. T. A., & Várnai, P. (2012). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist, 197(1), 58-64. doi:10.1111/nph.12005

Letarte, J., Simion, E., Miner, M., & Kasha, K. J. (2005). Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Reports, 24(12), 691-698. doi:10.1007/s00299-005-0013-5

Majewska-Sawka, A., Münster, A., & Wisniewska, E. (2004). Temporal and Spatial Distribution of Pectin Epitopes in Differentiating Anthers and Microspores of Fertile and Sterile Sugar Beet. Plant and Cell Physiology, 45(5), 560-572. doi:10.1093/pcp/pch066

Makowska, K., Kałużniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and Organ Culture (PCTOC), 131(2), 247-257. doi:10.1007/s11240-017-1280-x

Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., … Knox, J. P. (2008). Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 8(1), 60. doi:10.1186/1471-2229-8-60

McCartney, L., Marcus, S. E., & Knox, J. P. (2005). Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53(4), 543-546. doi:10.1369/jhc.4b6578.2005

McCartney, L., Ormerod, andrew P., Gidley, M. J., & Knox, J. P. (2000). Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal, 22(2), 105-113. doi:10.1046/j.1365-313x.2000.00719.x

McCartney, L., Steele-King, C. G., Jordan, E., & Knox, J. P. (2003). Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling root meristem. The Plant Journal, 33(3), 447-454. doi:10.1046/j.1365-313x.2003.01640.x

Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6(9), 414-419. doi:10.1016/s1360-1385(01)02045-3

MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006

Nguema-Ona, E., Vicré-Gibouin, M., Gotté, M., Plancot, B., Lerouge, P., Bardor, M., & Driouich, A. (2014). Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00499

Nothnagel, E. A. (1997). Proteoglycans and Related Components in Plant Cells. International Review of Cytology, 195-291. doi:10.1016/s0074-7696(08)62118-x

Paire, A., Devaux, P., Lafitte, C., Dumas, C., & Matthys-Rochon, E. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 167-176. doi:10.1023/a:1022805623167

Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., … Hahn, M. G. (2010). A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153(2), 514-525. doi:10.1104/pp.109.151985

Peña, M. J., Ryden, P., Madson, M., Smith, A. C., & Carpita, N. C. (2004). The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 134(1), 443-451. doi:10.1104/pp.103.027508

Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., & Roberts, K. (1991). Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell, 1317-1326. doi:10.1105/tpc.3.12.1317

Pereira, A. M., Pereira, L. G., & Coimbra, S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reproduction, 28(1), 1-15. doi:10.1007/s00497-015-0254-6

Pereira-Netto, A. B., Pettolino, F., Cruz-Silva, C. T. A., Simas, F. F., Bacic, A., Carneiro-Leão, A. M. dos A., … Maurer, J. B. B. (2007). Cashew-nut tree exudate gum: Identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Science, 173(4), 468-477. doi:10.1016/j.plantsci.2007.07.008

Qin, Y., & Zhao, J. (2007). Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sexual Plant Reproduction, 20(4), 213-224. doi:10.1007/s00497-007-0058-4

Rivas-Sendra, A., Corral-Martínez, P., Porcel, R., Camacho-Fernández, C., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2019). Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. Journal of Experimental Botany, 70(4), 1267-1281. doi:10.1093/jxb/ery458

Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7

Seguí-Simarro, J. M., & Nuez, F. (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenetic and Genome Research, 120(3-4), 358-369. doi:10.1159/000121085

Shu, H., Xu, L., Li, Z., Li, J., Jin, Z., & Chang, S. (2014). Tobacco Arabinogalactan Protein NtEPc Can Promote Banana (Musa AAA) Somatic Embryogenesis. Applied Biochemistry and Biotechnology, 174(8), 2818-2826. doi:10.1007/s12010-014-1228-0

Simmonds, D. H., & Keller, W. A. (1999). Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta, 208(3), 383-391. doi:10.1007/s004250050573

Supena, E. D. J., Winarto, B., Riksen, T., Dubas, E., van Lammeren, A., Offringa, R., … Custers, J. (2008). Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. Journal of Experimental Botany, 59(4), 803-814. doi:10.1093/jxb/erm358

Tang, X.-C. (2006). The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany, 57(11), 2639-2650. doi:10.1093/jxb/erl027

Willats, W. G. T., Steele-King, C. G., Marcus, S. E., & Knox, J. P. (1999). Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant Journal, 20(6), 619-628. doi:10.1046/j.1365-313x.1999.00629.x

Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G.-J., Benen, J., Christensen, T. M. I. E., … Knox, J. P. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 327(3), 309-320. doi:10.1016/s0008-6215(00)00039-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem