Mostrar el registro sencillo del ítem
dc.contributor.author | Corral Martínez, Patricia | es_ES |
dc.contributor.author | Driouich, Azeddine | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.date.accessioned | 2020-05-16T03:00:30Z | |
dc.date.available | 2020-05-16T03:00:30Z | |
dc.date.issued | 2019-03-28 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143434 | |
dc.description.abstract | [EN] Microspore embryogenesis is a manifestation of plant cell totipotency whereby new cell walls are formed as a consequence of the embryogenic switch. In particular, the callose-rich subintinal layer created immediately upon induction of embryogenesis was recently related to protection against stress. However, little is currently known about the functional significance of other compositional changes undergone by the walls of embryogenic microspores. We characterized these changes in Brassica napus at different stages during induction of embryogenic microspores and development of microspore-derived embryos (MDEs) by using a series of monoclonal antibodies specific for cell wall components, including arabinogalactan-proteins (AGPs), pectins, xyloglucan and xylan. We used JIM13, JIM8, JIM14 and JIM16 for AGPs, CCRC-M13, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1 and LM15 for xyloglucan, and LM11 for xylan. By transmission electron microscopy and quantification of immunogold labeling on high-pressure frozen, freeze-substituted samples, we profiled the changes in cell wall ultrastructure and composition at the different stages of microspore embryogenesis. As a reference to compare with, we also studied in vivo microspores and maturing pollen grains. We showed that the cell wall of embryogenic microspores is a highly dynamic structure whose architecture, arrangement and composition changes dramatically as microspores undergo embryogenesis and then transform into MDEs. Upon induction, the composition of the preexisting microspore intine walls is remodeled, and unusual walls with a unique structure and composition are formed. Changes in AGP composition were related to developmental fate. In particular, AGPs containing the JIM13 epitope were massively excreted into the cell apoplast, and appeared associated to cell totipotency. According to the ultrastructure and the pectin and xyloglucan composition of these walls, we deduced that commitment to embryogenesis induces the formation of fragile, plastic and deformable cell walls, which allow for cell expansion and microspore growth. We also showed that these special walls are transient, since cell wall composition in microspore-derived embryos was completely different. Thus, once adopted the embryogenic developmental pathway and far from the effects of heat shock exposure, cell wall biosynthesis would approach the structure, composition and properties of conventional cell walls. | es_ES |
dc.description.sponsorship | This work was supported by grant AGL2017-88135-R to JS-S from Spanish MINECO jointly funded by FEDER. AD would like to thank the University of Rouen and Normandie Regional Council (France) for financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Andiugenesis | es_ES |
dc.subject | Cell wall | es_ES |
dc.subject | Doubled haploid | es_ES |
dc.subject | Electron microscopy | es_ES |
dc.subject | Immunogold labeling | es_ES |
dc.subject | Rapeseed | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2019.00332 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Corral Martínez, P.; Driouich, A.; Seguí-Simarro, JM. (2019). Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition o the Cell Wall During Microspore Embryogenesis in Brassica napus. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.00332 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2019.00332 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 30984213 | es_ES |
dc.identifier.pmcid | PMC6447685 | es_ES |
dc.relation.pasarela | S\384593 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Université de Rouen Normandie | es_ES |
dc.contributor.funder | Conseil Régional de Haute Normandie | es_ES |
dc.description.references | Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392 | es_ES |
dc.description.references | Daher, F. B., & Braybrook, S. A. (2015). How to let go: pectin and plant cell adhesion. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00523 | es_ES |
dc.description.references | Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., … Keegstra, K. (2008). Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component. The Plant Cell, 20(6), 1519-1537. doi:10.1105/tpc.108.059873 | es_ES |
dc.description.references | Chapman, A., Blervacq, A.-S., Hendriks, T., Slomianny, C., Vasseur, J., & Hilbert, J.-L. (2000). Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalization on chicory embryos. Canadian Journal of Botany, 78(6), 824-831. doi:10.1139/b00-060 | es_ES |
dc.description.references | Cheung, A. Y., & Wu, H.-M. (1999). Arabinogalactan proteins in plant sexual reproduction. Protoplasma, 208(1-4), 87-98. doi:10.1007/bf01279078 | es_ES |
dc.description.references | Corral-Martínez, P., García-Fortea, E., Bernard, S., Driouich, A., & Seguí-Simarro, J. M. (2016). Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development inBrassica napus. Plant and Cell Physiology, 57(10), 2161-2174. doi:10.1093/pcp/pcw133 | es_ES |
dc.description.references | Corral-Martínez, P., Nuez, F., & Seguí-Simarro, J. M. (2010). Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica, 178(2), 215-228. doi:10.1007/s10681-010-0303-z | es_ES |
dc.description.references | Corral-Martínez, P., & Seguí-Simarro, J. M. (2013). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195(3), 369-382. doi:10.1007/s10681-013-1001-4 | es_ES |
dc.description.references | Cosgrove, D. J. (1997). ASSEMBLY AND ENLARGEMENT OF THE PRIMARY CELL WALL IN PLANTS. Annual Review of Cell and Developmental Biology, 13(1), 171-201. doi:10.1146/annurev.cellbio.13.1.171 | es_ES |
dc.description.references | Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. doi:10.1038/nrm1746 | es_ES |
dc.description.references | Custers, J. B. M. (2003). Microspore culture in rapeseed (Brassica napus L.). Doubled Haploid Production in Crop Plants, 185-193. doi:10.1007/978-94-017-1293-4_29 | es_ES |
dc.description.references | P. Darley, C., M. Forrester, A., & J. McQueen-Mason, S. (2001). Plant Molecular Biology, 47(1/2), 179-195. doi:10.1023/a:1010687600670 | es_ES |
dc.description.references | Duchow, S., Dahlke, R. I., Geske, T., Blaschek, W., & Classen, B. (2016). Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides. Carbohydrate Polymers, 152, 149-155. doi:10.1016/j.carbpol.2016.07.015 | es_ES |
dc.description.references | El-Tantawy, A.-A., Solís, M.-T., Da Costa, M. L., Coimbra, S., Risueño, M.-C., & Testillano, P. S. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reproduction, 26(3), 231-243. doi:10.1007/s00497-013-0217-8 | es_ES |
dc.description.references | Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan. Plant Physiology, 113(4), 1405-1412. doi:10.1104/pp.113.4.1405 | es_ES |
dc.description.references | Kikuchi, A., Satoh, S., Nakamura, N., & Fujii, T. (1995). Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli. Plant Cell Reports, 14(5). doi:10.1007/bf00232028 | es_ES |
dc.description.references | Knox, J. P., Linstead, P., King, J., Cooper, C., & Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 181(4). doi:10.1007/bf00193004 | es_ES |
dc.description.references | Knox, J. ., Linstead, P. ., Cooper, J. P. C., & Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. The Plant Journal, 1(3), 317-326. doi:10.1046/j.1365-313x.1991.t01-9-00999.x | es_ES |
dc.description.references | Lamport, D. T. A., & Várnai, P. (2012). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist, 197(1), 58-64. doi:10.1111/nph.12005 | es_ES |
dc.description.references | Letarte, J., Simion, E., Miner, M., & Kasha, K. J. (2005). Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Reports, 24(12), 691-698. doi:10.1007/s00299-005-0013-5 | es_ES |
dc.description.references | Majewska-Sawka, A., Münster, A., & Wisniewska, E. (2004). Temporal and Spatial Distribution of Pectin Epitopes in Differentiating Anthers and Microspores of Fertile and Sterile Sugar Beet. Plant and Cell Physiology, 45(5), 560-572. doi:10.1093/pcp/pch066 | es_ES |
dc.description.references | Makowska, K., Kałużniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and Organ Culture (PCTOC), 131(2), 247-257. doi:10.1007/s11240-017-1280-x | es_ES |
dc.description.references | Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., … Knox, J. P. (2008). Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 8(1), 60. doi:10.1186/1471-2229-8-60 | es_ES |
dc.description.references | McCartney, L., Marcus, S. E., & Knox, J. P. (2005). Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53(4), 543-546. doi:10.1369/jhc.4b6578.2005 | es_ES |
dc.description.references | McCartney, L., Ormerod, andrew P., Gidley, M. J., & Knox, J. P. (2000). Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal, 22(2), 105-113. doi:10.1046/j.1365-313x.2000.00719.x | es_ES |
dc.description.references | McCartney, L., Steele-King, C. G., Jordan, E., & Knox, J. P. (2003). Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling root meristem. The Plant Journal, 33(3), 447-454. doi:10.1046/j.1365-313x.2003.01640.x | es_ES |
dc.description.references | Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6(9), 414-419. doi:10.1016/s1360-1385(01)02045-3 | es_ES |
dc.description.references | MOHNEN, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. doi:10.1016/j.pbi.2008.03.006 | es_ES |
dc.description.references | Nguema-Ona, E., Vicré-Gibouin, M., Gotté, M., Plancot, B., Lerouge, P., Bardor, M., & Driouich, A. (2014). Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00499 | es_ES |
dc.description.references | Nothnagel, E. A. (1997). Proteoglycans and Related Components in Plant Cells. International Review of Cytology, 195-291. doi:10.1016/s0074-7696(08)62118-x | es_ES |
dc.description.references | Paire, A., Devaux, P., Lafitte, C., Dumas, C., & Matthys-Rochon, E. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 167-176. doi:10.1023/a:1022805623167 | es_ES |
dc.description.references | Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., … Hahn, M. G. (2010). A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153(2), 514-525. doi:10.1104/pp.109.151985 | es_ES |
dc.description.references | Peña, M. J., Ryden, P., Madson, M., Smith, A. C., & Carpita, N. C. (2004). The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 134(1), 443-451. doi:10.1104/pp.103.027508 | es_ES |
dc.description.references | Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., & Roberts, K. (1991). Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell, 1317-1326. doi:10.1105/tpc.3.12.1317 | es_ES |
dc.description.references | Pereira, A. M., Pereira, L. G., & Coimbra, S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reproduction, 28(1), 1-15. doi:10.1007/s00497-015-0254-6 | es_ES |
dc.description.references | Pereira-Netto, A. B., Pettolino, F., Cruz-Silva, C. T. A., Simas, F. F., Bacic, A., Carneiro-Leão, A. M. dos A., … Maurer, J. B. B. (2007). Cashew-nut tree exudate gum: Identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Science, 173(4), 468-477. doi:10.1016/j.plantsci.2007.07.008 | es_ES |
dc.description.references | Qin, Y., & Zhao, J. (2007). Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sexual Plant Reproduction, 20(4), 213-224. doi:10.1007/s00497-007-0058-4 | es_ES |
dc.description.references | Rivas-Sendra, A., Corral-Martínez, P., Porcel, R., Camacho-Fernández, C., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2019). Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. Journal of Experimental Botany, 70(4), 1267-1281. doi:10.1093/jxb/ery458 | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7 | es_ES |
dc.description.references | Seguí-Simarro, J. M., & Nuez, F. (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenetic and Genome Research, 120(3-4), 358-369. doi:10.1159/000121085 | es_ES |
dc.description.references | Shu, H., Xu, L., Li, Z., Li, J., Jin, Z., & Chang, S. (2014). Tobacco Arabinogalactan Protein NtEPc Can Promote Banana (Musa AAA) Somatic Embryogenesis. Applied Biochemistry and Biotechnology, 174(8), 2818-2826. doi:10.1007/s12010-014-1228-0 | es_ES |
dc.description.references | Simmonds, D. H., & Keller, W. A. (1999). Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta, 208(3), 383-391. doi:10.1007/s004250050573 | es_ES |
dc.description.references | Supena, E. D. J., Winarto, B., Riksen, T., Dubas, E., van Lammeren, A., Offringa, R., … Custers, J. (2008). Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. Journal of Experimental Botany, 59(4), 803-814. doi:10.1093/jxb/erm358 | es_ES |
dc.description.references | Tang, X.-C. (2006). The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany, 57(11), 2639-2650. doi:10.1093/jxb/erl027 | es_ES |
dc.description.references | Willats, W. G. T., Steele-King, C. G., Marcus, S. E., & Knox, J. P. (1999). Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant Journal, 20(6), 619-628. doi:10.1046/j.1365-313x.1999.00629.x | es_ES |
dc.description.references | Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G.-J., Benen, J., Christensen, T. M. I. E., … Knox, J. P. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 327(3), 309-320. doi:10.1016/s0008-6215(00)00039-2 | es_ES |