Fernández-García, A., Rojas, E., Pérez, M., Silva, R., Hernández-Escobedo, Q., & Manzano-Agugliaro, F. (2015). A parabolic-trough collector for cleaner industrial process heat. Journal of Cleaner Production, 89, 272-285. doi:10.1016/j.jclepro.2014.11.018
Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625-640. doi:10.1016/s0301-4215(00)00041-0
Cruz-Peragon, F., Palomar, J. M., Casanova, P. J., Dorado, M. P., & Manzano-Agugliaro, F. (2012). Characterization of solar flat plate collectors. Renewable and Sustainable Energy Reviews, 16(3), 1709-1720. doi:10.1016/j.rser.2011.11.025
[+]
Fernández-García, A., Rojas, E., Pérez, M., Silva, R., Hernández-Escobedo, Q., & Manzano-Agugliaro, F. (2015). A parabolic-trough collector for cleaner industrial process heat. Journal of Cleaner Production, 89, 272-285. doi:10.1016/j.jclepro.2014.11.018
Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625-640. doi:10.1016/s0301-4215(00)00041-0
Cruz-Peragon, F., Palomar, J. M., Casanova, P. J., Dorado, M. P., & Manzano-Agugliaro, F. (2012). Characterization of solar flat plate collectors. Renewable and Sustainable Energy Reviews, 16(3), 1709-1720. doi:10.1016/j.rser.2011.11.025
Perea-Moreno, A.-J., Perea-Moreno, M.-Á., Hernandez-Escobedo, Q., & Manzano-Agugliaro, F. (2017). Towards forest sustainability in Mediterranean countries using biomass as fuel for heating. Journal of Cleaner Production, 156, 624-634. doi:10.1016/j.jclepro.2017.04.091
Esteban, L. S., & Carrasco, J. E. (2011). Biomass resources and costs: Assessment in different EU countries. Biomass and Bioenergy, 35, S21-S30. doi:10.1016/j.biombioe.2011.03.045
Sajdak, M., Velázquez-Martí, B., López-Cortés, I., Fernández-Sarría, A., & Estornell, J. (2014). Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renewable Energy, 66, 178-184. doi:10.1016/j.renene.2013.12.005
Sajdak, M., & Velazquez-Marti, B. (2012). Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy, 47, 188-193. doi:10.1016/j.renene.2012.04.002
Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(7), 3208-3217. doi:10.1016/j.biombioe.2011.04.042
MacFarlane, D. W. (2009). Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass and Bioenergy, 33(4), 628-634. doi:10.1016/j.biombioe.2008.10.004
Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B., & Vakkilainen, E. (2018). Global biomass trade for energy- Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioproducts and Biorefining, 13(2), 371-387. doi:10.1002/bbb.1858
Prando, D., Renzi, M., Gasparella, A., & Baratieri, M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 79, 98-107. doi:10.1016/j.applthermaleng.2014.12.063
Biomass Boilers for Household Heatinghttp://www.itabia.it/testi%20digitali/Dossier%20Caldaie%20a%20Biomassa.pdf
Industrial Biomass Boilershttp://vycindustrial.com/es/calderas/productos/calderas-industriales-de-biomasa/
Uris, M., Linares, J. I., & Arenas, E. (2014). Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle. Renewable Energy, 66, 707-713. doi:10.1016/j.renene.2014.01.022
Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. doi:10.1016/j.energy.2017.05.160
Haseli, Y., van Oijen, J. A., & de Goey, L. P. H. (2011). Modeling biomass particle pyrolysis with temperature-dependent heat of reactions. Journal of Analytical and Applied Pyrolysis, 90(2), 140-154. doi:10.1016/j.jaap.2010.11.006
Morgan, H. M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., … Ruan, R. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology, 230, 112-121. doi:10.1016/j.biortech.2017.01.059
Oh, W.-D., Lisak, G., Webster, R. D., Liang, Y.-N., Veksha, A., Giannis, A., … Lim, T.-T. (2018). Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites. Applied Catalysis B: Environmental, 233, 120-129. doi:10.1016/j.apcatb.2018.03.106
Velázquez-Martí, B., López-Cortés, I., Salazar-Hernández, D., & Callejón-Ferre, Á. J. (2017). Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data. Biomass Volume Estimation and Valorization for Energy. doi:10.5772/65276
Toklu, E. (2017). Biomass energy potential and utilization in Turkey. Renewable Energy, 107, 235-244. doi:10.1016/j.renene.2017.02.008
Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renewable Energy, 36(2), 621-626. doi:10.1016/j.renene.2010.08.008
Winzer, F., Kraska, T., Elsenberger, C., Kötter, T., & Pude, R. (2017). Biomass from fruit trees for combined energy and food production. Biomass and Bioenergy, 107, 279-286. doi:10.1016/j.biombioe.2017.10.027
Callejón-Ferre, A. J., Carreño-Sánchez, J., Suárez-Medina, F. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2014). Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel, 116, 377-387. doi:10.1016/j.fuel.2013.08.023
Barco, A., Maucieri, C., & Borin, M. (2018). Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs. Agricultural Water Management, 196, 37-47. doi:10.1016/j.agwat.2017.10.017
Yin, C.-Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128-1132. doi:10.1016/j.fuel.2010.11.031
Vargas-Moreno, J. M., Callejón-Ferre, A. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2012). A review of the mathematical models for predicting the heating value of biomass materials. Renewable and Sustainable Energy Reviews, 16(5), 3065-3083. doi:10.1016/j.rser.2012.02.054
Velázquez-Martí, B., Sajdak, M., López-Cortés, I., & Callejón-Ferre, A. J. (2014). Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas. Renewable Energy, 62, 478-483. doi:10.1016/j.renene.2013.08.010
Bychkov, A. L., Denkin, A. I., Tikhova, V. D., & Lomovsky, O. I. (2017). Prediction of higher heating values of plant biomass from ultimate analysis data. Journal of Thermal Analysis and Calorimetry, 130(3), 1399-1405. doi:10.1007/s10973-017-6350-0
Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K., & Rooney, D. W. (2017). Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications. Industrial & Engineering Chemistry Research, 56(42), 12119-12130. doi:10.1021/acs.iecr.7b03478
Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5), 499-507. doi:10.1016/j.biombioe.2004.11.008
Álvarez, A., Pizarro, C., García, R., & Bueno, J. L. (2015). Spanish biofuels heating value estimation based on structural analysis. Industrial Crops and Products, 77, 983-991. doi:10.1016/j.indcrop.2015.09.078
Agencia Estatal de Meteorologíahttp://www.aemet.es/es/serviciosclimaticos/datosclimatologicos
Vargas, F., Romero, M., Clavé, J., Vergés, J., Santos, J., & Batlle, I. (2008). ‘Vayro’, ‘Marinada’, ‘Constantí’, and ‘Tarraco’ Almonds. HortScience, 43(2), 535-537. doi:10.21273/hortsci.43.2.535
Mondragón-Valero, A., Lopéz-Cortés, I., Salazar, D. M., & de Córdova, P. F. (2017). Physical mechanisms produced in the development of nursery almond trees (Prunus dulcis Miller) as a response to the plant adaptation to different substrates. Rhizosphere, 3, 44-49. doi:10.1016/j.rhisph.2016.12.002
Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55-63. doi:10.1016/j.fuel.2012.04.015
Telmo, C., Lousada, J., & Moreira, N. (2010). Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology, 101(11), 3808-3815. doi:10.1016/j.biortech.2010.01.021
Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319-1324. doi:10.1016/j.renene.2009.11.042
Jenkins, B. ., Baxter, L. ., Miles, T. ., & Miles, T. . (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1-3), 17-46. doi:10.1016/s0378-3820(97)00059-3
Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. doi:10.1016/j.fuel.2009.10.022
Zhang, L., Xu, C. (Charles), & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969-982. doi:10.1016/j.enconman.2009.11.038
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37-46. doi:10.1016/s0960-8524(01)00118-3
Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 15(2), 948-955. doi:10.1016/j.rser.2010.11.012
Obernberger, I., Biedermann, F., Widmann, W., & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, 12(3), 211-224. doi:10.1016/s0961-9534(96)00051-7
Nordin, A. (1994). Chemical elemental characteristics of biomass fuels. Biomass and Bioenergy, 6(5), 339-347. doi:10.1016/0961-9534(94)e0031-m
Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183-188. doi:10.1016/s0196-8904(00)00050-9
Kuhlbusch, T. A., Lobert, J. M., Crutzen, P. J., & Warneck, P. (1991). Molecular nitrogen emissions from denitrification during biomass burning. Nature, 351(6322), 135-137. doi:10.1038/351135a0
Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1
Ercoli, L., Mariotti, M., Masoni, A., & Bonari, E. (1999). Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 63(1), 3-11. doi:10.1016/s0378-4290(99)00022-2
Mantineo, M., D’Agosta, G. M., Copani, V., Patanè, C., & Cosentino, S. L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114(2), 204-213. doi:10.1016/j.fcr.2009.07.020
[-]