- -

Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mondragón-Valero, Alba es_ES
dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Salazar Hernández, Domingo Manuel es_ES
dc.contributor.author López- Cortés, I es_ES
dc.date.accessioned 2020-05-19T03:02:30Z
dc.date.available 2020-05-19T03:02:30Z
dc.date.issued 2018-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143618
dc.description.abstract [EN] The importance of replacing fossil fuels with new energy routes such as the use of biomass leads to the improvement of sources such as agricultural and forest systems through adequate management techniques. The selection of the vegetal material and the management practices can influence the properties and quality of the obtained biofuel. The properties of the biomass obtained from pruning almond trees (Prunus dulcis (Mill)) have been analyzed in this study. Two varieties were tested, Marcona and Vayro, with three rootstocks, GF305, GF677 and GN Garnem, under different fertilization systems. The quality of the biofuel was evaluated with respect to the chemical composition and gross calorific value. We observed that the variables that mostly influenced the gross calorific value of the biomass were the variety, the rootstock and, primarily, the variety-rootstock interaction. Marcona presented better biomass properties than Vayro. Trees grafted on GF305 obtained a higher gross calorific value than the ones grafted on GF677 and GN Garnem. The percentage of nitrogen highly depended on the fertilization treatment applied, with saccharides and aminoacid fertilization accumulating a higher level of nitrogen than the humic and fluvic fertilization. es_ES
dc.description.sponsorship This work was funded by Project 20170734. Development of methods of quantification of riparian vegetation biomass for the management of channels of the Comunitat Valenciana. Direccion General de Universidades. Generalitat Valenciana (Spain). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biomass es_ES
dc.subject Variety and rootstock selection es_ES
dc.subject Almond tree es_ES
dc.subject Agricultural practices es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en11051189 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F20170734/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Mondragón-Valero, A.; Velázquez Martí, B.; Salazar Hernández, DM.; López- Cortés, I. (2018). Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller). Energies. 11(5):1-12. https://doi.org/10.3390/en11051189 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en11051189 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\361775 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Fernández-García, A., Rojas, E., Pérez, M., Silva, R., Hernández-Escobedo, Q., & Manzano-Agugliaro, F. (2015). A parabolic-trough collector for cleaner industrial process heat. Journal of Cleaner Production, 89, 272-285. doi:10.1016/j.jclepro.2014.11.018 es_ES
dc.description.references Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625-640. doi:10.1016/s0301-4215(00)00041-0 es_ES
dc.description.references Cruz-Peragon, F., Palomar, J. M., Casanova, P. J., Dorado, M. P., & Manzano-Agugliaro, F. (2012). Characterization of solar flat plate collectors. Renewable and Sustainable Energy Reviews, 16(3), 1709-1720. doi:10.1016/j.rser.2011.11.025 es_ES
dc.description.references Perea-Moreno, A.-J., Perea-Moreno, M.-Á., Hernandez-Escobedo, Q., & Manzano-Agugliaro, F. (2017). Towards forest sustainability in Mediterranean countries using biomass as fuel for heating. Journal of Cleaner Production, 156, 624-634. doi:10.1016/j.jclepro.2017.04.091 es_ES
dc.description.references Esteban, L. S., & Carrasco, J. E. (2011). Biomass resources and costs: Assessment in different EU countries. Biomass and Bioenergy, 35, S21-S30. doi:10.1016/j.biombioe.2011.03.045 es_ES
dc.description.references Sajdak, M., Velázquez-Martí, B., López-Cortés, I., Fernández-Sarría, A., & Estornell, J. (2014). Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renewable Energy, 66, 178-184. doi:10.1016/j.renene.2013.12.005 es_ES
dc.description.references Sajdak, M., & Velazquez-Marti, B. (2012). Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy, 47, 188-193. doi:10.1016/j.renene.2012.04.002 es_ES
dc.description.references Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(7), 3208-3217. doi:10.1016/j.biombioe.2011.04.042 es_ES
dc.description.references MacFarlane, D. W. (2009). Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass and Bioenergy, 33(4), 628-634. doi:10.1016/j.biombioe.2008.10.004 es_ES
dc.description.references Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B., & Vakkilainen, E. (2018). Global biomass trade for energy- Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioproducts and Biorefining, 13(2), 371-387. doi:10.1002/bbb.1858 es_ES
dc.description.references Prando, D., Renzi, M., Gasparella, A., & Baratieri, M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 79, 98-107. doi:10.1016/j.applthermaleng.2014.12.063 es_ES
dc.description.references Biomass Boilers for Household Heatinghttp://www.itabia.it/testi%20digitali/Dossier%20Caldaie%20a%20Biomassa.pdf es_ES
dc.description.references Industrial Biomass Boilershttp://vycindustrial.com/es/calderas/productos/calderas-industriales-de-biomasa/ es_ES
dc.description.references Uris, M., Linares, J. I., & Arenas, E. (2014). Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle. Renewable Energy, 66, 707-713. doi:10.1016/j.renene.2014.01.022 es_ES
dc.description.references Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. doi:10.1016/j.energy.2017.05.160 es_ES
dc.description.references Haseli, Y., van Oijen, J. A., & de Goey, L. P. H. (2011). Modeling biomass particle pyrolysis with temperature-dependent heat of reactions. Journal of Analytical and Applied Pyrolysis, 90(2), 140-154. doi:10.1016/j.jaap.2010.11.006 es_ES
dc.description.references Morgan, H. M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., … Ruan, R. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology, 230, 112-121. doi:10.1016/j.biortech.2017.01.059 es_ES
dc.description.references Oh, W.-D., Lisak, G., Webster, R. D., Liang, Y.-N., Veksha, A., Giannis, A., … Lim, T.-T. (2018). Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites. Applied Catalysis B: Environmental, 233, 120-129. doi:10.1016/j.apcatb.2018.03.106 es_ES
dc.description.references Velázquez-Martí, B., López-Cortés, I., Salazar-Hernández, D., & Callejón-Ferre, Á. J. (2017). Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data. Biomass Volume Estimation and Valorization for Energy. doi:10.5772/65276 es_ES
dc.description.references Toklu, E. (2017). Biomass energy potential and utilization in Turkey. Renewable Energy, 107, 235-244. doi:10.1016/j.renene.2017.02.008 es_ES
dc.description.references Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renewable Energy, 36(2), 621-626. doi:10.1016/j.renene.2010.08.008 es_ES
dc.description.references Winzer, F., Kraska, T., Elsenberger, C., Kötter, T., & Pude, R. (2017). Biomass from fruit trees for combined energy and food production. Biomass and Bioenergy, 107, 279-286. doi:10.1016/j.biombioe.2017.10.027 es_ES
dc.description.references Callejón-Ferre, A. J., Carreño-Sánchez, J., Suárez-Medina, F. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2014). Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel, 116, 377-387. doi:10.1016/j.fuel.2013.08.023 es_ES
dc.description.references Barco, A., Maucieri, C., & Borin, M. (2018). Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs. Agricultural Water Management, 196, 37-47. doi:10.1016/j.agwat.2017.10.017 es_ES
dc.description.references Yin, C.-Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128-1132. doi:10.1016/j.fuel.2010.11.031 es_ES
dc.description.references Vargas-Moreno, J. M., Callejón-Ferre, A. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2012). A review of the mathematical models for predicting the heating value of biomass materials. Renewable and Sustainable Energy Reviews, 16(5), 3065-3083. doi:10.1016/j.rser.2012.02.054 es_ES
dc.description.references Velázquez-Martí, B., Sajdak, M., López-Cortés, I., & Callejón-Ferre, A. J. (2014). Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas. Renewable Energy, 62, 478-483. doi:10.1016/j.renene.2013.08.010 es_ES
dc.description.references Bychkov, A. L., Denkin, A. I., Tikhova, V. D., & Lomovsky, O. I. (2017). Prediction of higher heating values of plant biomass from ultimate analysis data. Journal of Thermal Analysis and Calorimetry, 130(3), 1399-1405. doi:10.1007/s10973-017-6350-0 es_ES
dc.description.references Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K., & Rooney, D. W. (2017). Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications. Industrial & Engineering Chemistry Research, 56(42), 12119-12130. doi:10.1021/acs.iecr.7b03478 es_ES
dc.description.references Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5), 499-507. doi:10.1016/j.biombioe.2004.11.008 es_ES
dc.description.references Álvarez, A., Pizarro, C., García, R., & Bueno, J. L. (2015). Spanish biofuels heating value estimation based on structural analysis. Industrial Crops and Products, 77, 983-991. doi:10.1016/j.indcrop.2015.09.078 es_ES
dc.description.references Agencia Estatal de Meteorologíahttp://www.aemet.es/es/serviciosclimaticos/datosclimatologicos es_ES
dc.description.references Vargas, F., Romero, M., Clavé, J., Vergés, J., Santos, J., & Batlle, I. (2008). ‘Vayro’, ‘Marinada’, ‘Constantí’, and ‘Tarraco’ Almonds. HortScience, 43(2), 535-537. doi:10.21273/hortsci.43.2.535 es_ES
dc.description.references Mondragón-Valero, A., Lopéz-Cortés, I., Salazar, D. M., & de Córdova, P. F. (2017). Physical mechanisms produced in the development of nursery almond trees (Prunus dulcis Miller) as a response to the plant adaptation to different substrates. Rhizosphere, 3, 44-49. doi:10.1016/j.rhisph.2016.12.002 es_ES
dc.description.references Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55-63. doi:10.1016/j.fuel.2012.04.015 es_ES
dc.description.references Telmo, C., Lousada, J., & Moreira, N. (2010). Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology, 101(11), 3808-3815. doi:10.1016/j.biortech.2010.01.021 es_ES
dc.description.references Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319-1324. doi:10.1016/j.renene.2009.11.042 es_ES
dc.description.references Jenkins, B. ., Baxter, L. ., Miles, T. ., & Miles, T. . (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1-3), 17-46. doi:10.1016/s0378-3820(97)00059-3 es_ES
dc.description.references Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. doi:10.1016/j.fuel.2009.10.022 es_ES
dc.description.references Zhang, L., Xu, C. (Charles), & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969-982. doi:10.1016/j.enconman.2009.11.038 es_ES
dc.description.references McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37-46. doi:10.1016/s0960-8524(01)00118-3 es_ES
dc.description.references Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 15(2), 948-955. doi:10.1016/j.rser.2010.11.012 es_ES
dc.description.references Obernberger, I., Biedermann, F., Widmann, W., & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, 12(3), 211-224. doi:10.1016/s0961-9534(96)00051-7 es_ES
dc.description.references Nordin, A. (1994). Chemical elemental characteristics of biomass fuels. Biomass and Bioenergy, 6(5), 339-347. doi:10.1016/0961-9534(94)e0031-m es_ES
dc.description.references Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183-188. doi:10.1016/s0196-8904(00)00050-9 es_ES
dc.description.references Kuhlbusch, T. A., Lobert, J. M., Crutzen, P. J., & Warneck, P. (1991). Molecular nitrogen emissions from denitrification during biomass burning. Nature, 351(6322), 135-137. doi:10.1038/351135a0 es_ES
dc.description.references Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1 es_ES
dc.description.references Ercoli, L., Mariotti, M., Masoni, A., & Bonari, E. (1999). Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 63(1), 3-11. doi:10.1016/s0378-4290(99)00022-2 es_ES
dc.description.references Mantineo, M., D’Agosta, G. M., Copani, V., Patanè, C., & Cosentino, S. L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114(2), 204-213. doi:10.1016/j.fcr.2009.07.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem