Mostrar el registro sencillo del ítem
dc.contributor.author | Mondragón-Valero, Alba | es_ES |
dc.contributor.author | Velázquez Martí, Borja | es_ES |
dc.contributor.author | Salazar Hernández, Domingo Manuel | es_ES |
dc.contributor.author | López- Cortés, I | es_ES |
dc.date.accessioned | 2020-05-19T03:02:30Z | |
dc.date.available | 2020-05-19T03:02:30Z | |
dc.date.issued | 2018-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143618 | |
dc.description.abstract | [EN] The importance of replacing fossil fuels with new energy routes such as the use of biomass leads to the improvement of sources such as agricultural and forest systems through adequate management techniques. The selection of the vegetal material and the management practices can influence the properties and quality of the obtained biofuel. The properties of the biomass obtained from pruning almond trees (Prunus dulcis (Mill)) have been analyzed in this study. Two varieties were tested, Marcona and Vayro, with three rootstocks, GF305, GF677 and GN Garnem, under different fertilization systems. The quality of the biofuel was evaluated with respect to the chemical composition and gross calorific value. We observed that the variables that mostly influenced the gross calorific value of the biomass were the variety, the rootstock and, primarily, the variety-rootstock interaction. Marcona presented better biomass properties than Vayro. Trees grafted on GF305 obtained a higher gross calorific value than the ones grafted on GF677 and GN Garnem. The percentage of nitrogen highly depended on the fertilization treatment applied, with saccharides and aminoacid fertilization accumulating a higher level of nitrogen than the humic and fluvic fertilization. | es_ES |
dc.description.sponsorship | This work was funded by Project 20170734. Development of methods of quantification of riparian vegetation biomass for the management of channels of the Comunitat Valenciana. Direccion General de Universidades. Generalitat Valenciana (Spain). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Biomass | es_ES |
dc.subject | Variety and rootstock selection | es_ES |
dc.subject | Almond tree | es_ES |
dc.subject | Agricultural practices | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en11051189 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F20170734/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Mondragón-Valero, A.; Velázquez Martí, B.; Salazar Hernández, DM.; López- Cortés, I. (2018). Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller). Energies. 11(5):1-12. https://doi.org/10.3390/en11051189 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en11051189 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\361775 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Fernández-García, A., Rojas, E., Pérez, M., Silva, R., Hernández-Escobedo, Q., & Manzano-Agugliaro, F. (2015). A parabolic-trough collector for cleaner industrial process heat. Journal of Cleaner Production, 89, 272-285. doi:10.1016/j.jclepro.2014.11.018 | es_ES |
dc.description.references | Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625-640. doi:10.1016/s0301-4215(00)00041-0 | es_ES |
dc.description.references | Cruz-Peragon, F., Palomar, J. M., Casanova, P. J., Dorado, M. P., & Manzano-Agugliaro, F. (2012). Characterization of solar flat plate collectors. Renewable and Sustainable Energy Reviews, 16(3), 1709-1720. doi:10.1016/j.rser.2011.11.025 | es_ES |
dc.description.references | Perea-Moreno, A.-J., Perea-Moreno, M.-Á., Hernandez-Escobedo, Q., & Manzano-Agugliaro, F. (2017). Towards forest sustainability in Mediterranean countries using biomass as fuel for heating. Journal of Cleaner Production, 156, 624-634. doi:10.1016/j.jclepro.2017.04.091 | es_ES |
dc.description.references | Esteban, L. S., & Carrasco, J. E. (2011). Biomass resources and costs: Assessment in different EU countries. Biomass and Bioenergy, 35, S21-S30. doi:10.1016/j.biombioe.2011.03.045 | es_ES |
dc.description.references | Sajdak, M., Velázquez-Martí, B., López-Cortés, I., Fernández-Sarría, A., & Estornell, J. (2014). Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renewable Energy, 66, 178-184. doi:10.1016/j.renene.2013.12.005 | es_ES |
dc.description.references | Sajdak, M., & Velazquez-Marti, B. (2012). Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy, 47, 188-193. doi:10.1016/j.renene.2012.04.002 | es_ES |
dc.description.references | Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(7), 3208-3217. doi:10.1016/j.biombioe.2011.04.042 | es_ES |
dc.description.references | MacFarlane, D. W. (2009). Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass and Bioenergy, 33(4), 628-634. doi:10.1016/j.biombioe.2008.10.004 | es_ES |
dc.description.references | Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B., & Vakkilainen, E. (2018). Global biomass trade for energy- Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioproducts and Biorefining, 13(2), 371-387. doi:10.1002/bbb.1858 | es_ES |
dc.description.references | Prando, D., Renzi, M., Gasparella, A., & Baratieri, M. (2015). Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 79, 98-107. doi:10.1016/j.applthermaleng.2014.12.063 | es_ES |
dc.description.references | Biomass Boilers for Household Heatinghttp://www.itabia.it/testi%20digitali/Dossier%20Caldaie%20a%20Biomassa.pdf | es_ES |
dc.description.references | Industrial Biomass Boilershttp://vycindustrial.com/es/calderas/productos/calderas-industriales-de-biomasa/ | es_ES |
dc.description.references | Uris, M., Linares, J. I., & Arenas, E. (2014). Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle. Renewable Energy, 66, 707-713. doi:10.1016/j.renene.2014.01.022 | es_ES |
dc.description.references | Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. doi:10.1016/j.energy.2017.05.160 | es_ES |
dc.description.references | Haseli, Y., van Oijen, J. A., & de Goey, L. P. H. (2011). Modeling biomass particle pyrolysis with temperature-dependent heat of reactions. Journal of Analytical and Applied Pyrolysis, 90(2), 140-154. doi:10.1016/j.jaap.2010.11.006 | es_ES |
dc.description.references | Morgan, H. M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., … Ruan, R. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology, 230, 112-121. doi:10.1016/j.biortech.2017.01.059 | es_ES |
dc.description.references | Oh, W.-D., Lisak, G., Webster, R. D., Liang, Y.-N., Veksha, A., Giannis, A., … Lim, T.-T. (2018). Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites. Applied Catalysis B: Environmental, 233, 120-129. doi:10.1016/j.apcatb.2018.03.106 | es_ES |
dc.description.references | Velázquez-Martí, B., López-Cortés, I., Salazar-Hernández, D., & Callejón-Ferre, Á. J. (2017). Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data. Biomass Volume Estimation and Valorization for Energy. doi:10.5772/65276 | es_ES |
dc.description.references | Toklu, E. (2017). Biomass energy potential and utilization in Turkey. Renewable Energy, 107, 235-244. doi:10.1016/j.renene.2017.02.008 | es_ES |
dc.description.references | Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renewable Energy, 36(2), 621-626. doi:10.1016/j.renene.2010.08.008 | es_ES |
dc.description.references | Winzer, F., Kraska, T., Elsenberger, C., Kötter, T., & Pude, R. (2017). Biomass from fruit trees for combined energy and food production. Biomass and Bioenergy, 107, 279-286. doi:10.1016/j.biombioe.2017.10.027 | es_ES |
dc.description.references | Callejón-Ferre, A. J., Carreño-Sánchez, J., Suárez-Medina, F. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2014). Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel, 116, 377-387. doi:10.1016/j.fuel.2013.08.023 | es_ES |
dc.description.references | Barco, A., Maucieri, C., & Borin, M. (2018). Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs. Agricultural Water Management, 196, 37-47. doi:10.1016/j.agwat.2017.10.017 | es_ES |
dc.description.references | Yin, C.-Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128-1132. doi:10.1016/j.fuel.2010.11.031 | es_ES |
dc.description.references | Vargas-Moreno, J. M., Callejón-Ferre, A. J., Pérez-Alonso, J., & Velázquez-Martí, B. (2012). A review of the mathematical models for predicting the heating value of biomass materials. Renewable and Sustainable Energy Reviews, 16(5), 3065-3083. doi:10.1016/j.rser.2012.02.054 | es_ES |
dc.description.references | Velázquez-Martí, B., Sajdak, M., López-Cortés, I., & Callejón-Ferre, A. J. (2014). Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas. Renewable Energy, 62, 478-483. doi:10.1016/j.renene.2013.08.010 | es_ES |
dc.description.references | Bychkov, A. L., Denkin, A. I., Tikhova, V. D., & Lomovsky, O. I. (2017). Prediction of higher heating values of plant biomass from ultimate analysis data. Journal of Thermal Analysis and Calorimetry, 130(3), 1399-1405. doi:10.1007/s10973-017-6350-0 | es_ES |
dc.description.references | Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K., & Rooney, D. W. (2017). Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications. Industrial & Engineering Chemistry Research, 56(42), 12119-12130. doi:10.1021/acs.iecr.7b03478 | es_ES |
dc.description.references | Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5), 499-507. doi:10.1016/j.biombioe.2004.11.008 | es_ES |
dc.description.references | Álvarez, A., Pizarro, C., García, R., & Bueno, J. L. (2015). Spanish biofuels heating value estimation based on structural analysis. Industrial Crops and Products, 77, 983-991. doi:10.1016/j.indcrop.2015.09.078 | es_ES |
dc.description.references | Agencia Estatal de Meteorologíahttp://www.aemet.es/es/serviciosclimaticos/datosclimatologicos | es_ES |
dc.description.references | Vargas, F., Romero, M., Clavé, J., Vergés, J., Santos, J., & Batlle, I. (2008). ‘Vayro’, ‘Marinada’, ‘Constantí’, and ‘Tarraco’ Almonds. HortScience, 43(2), 535-537. doi:10.21273/hortsci.43.2.535 | es_ES |
dc.description.references | Mondragón-Valero, A., Lopéz-Cortés, I., Salazar, D. M., & de Córdova, P. F. (2017). Physical mechanisms produced in the development of nursery almond trees (Prunus dulcis Miller) as a response to the plant adaptation to different substrates. Rhizosphere, 3, 44-49. doi:10.1016/j.rhisph.2016.12.002 | es_ES |
dc.description.references | Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55-63. doi:10.1016/j.fuel.2012.04.015 | es_ES |
dc.description.references | Telmo, C., Lousada, J., & Moreira, N. (2010). Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology, 101(11), 3808-3815. doi:10.1016/j.biortech.2010.01.021 | es_ES |
dc.description.references | Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319-1324. doi:10.1016/j.renene.2009.11.042 | es_ES |
dc.description.references | Jenkins, B. ., Baxter, L. ., Miles, T. ., & Miles, T. . (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1-3), 17-46. doi:10.1016/s0378-3820(97)00059-3 | es_ES |
dc.description.references | Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. doi:10.1016/j.fuel.2009.10.022 | es_ES |
dc.description.references | Zhang, L., Xu, C. (Charles), & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969-982. doi:10.1016/j.enconman.2009.11.038 | es_ES |
dc.description.references | McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37-46. doi:10.1016/s0960-8524(01)00118-3 | es_ES |
dc.description.references | Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 15(2), 948-955. doi:10.1016/j.rser.2010.11.012 | es_ES |
dc.description.references | Obernberger, I., Biedermann, F., Widmann, W., & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, 12(3), 211-224. doi:10.1016/s0961-9534(96)00051-7 | es_ES |
dc.description.references | Nordin, A. (1994). Chemical elemental characteristics of biomass fuels. Biomass and Bioenergy, 6(5), 339-347. doi:10.1016/0961-9534(94)e0031-m | es_ES |
dc.description.references | Demirbaş, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183-188. doi:10.1016/s0196-8904(00)00050-9 | es_ES |
dc.description.references | Kuhlbusch, T. A., Lobert, J. M., Crutzen, P. J., & Warneck, P. (1991). Molecular nitrogen emissions from denitrification during biomass burning. Nature, 351(6322), 135-137. doi:10.1038/351135a0 | es_ES |
dc.description.references | Owen, A. ., & Jones, D. . (2001). Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 33(4-5), 651-657. doi:10.1016/s0038-0717(00)00209-1 | es_ES |
dc.description.references | Ercoli, L., Mariotti, M., Masoni, A., & Bonari, E. (1999). Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 63(1), 3-11. doi:10.1016/s0378-4290(99)00022-2 | es_ES |
dc.description.references | Mantineo, M., D’Agosta, G. M., Copani, V., Patanè, C., & Cosentino, S. L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114(2), 204-213. doi:10.1016/j.fcr.2009.07.020 | es_ES |