- -

Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation

Mostrar el registro completo del ítem

Sánchez-Arciniegas, JP.; Gomez, JF.; Martínez-Mateu, L.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2019). Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Frontiers in Physiology. 10:1-13. https://doi.org/10.3389/fphys.2019.00847

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143622

Ficheros en el ítem

Metadatos del ítem

Título: Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation
Autor: Sánchez-Arciniegas, Jorge Patricio Gomez, Juan F Martínez-Mateu, Laura Romero Pérez, Lucia Saiz Rodríguez, Francisco Javier Trenor Gomis, Beatriz Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural ...[+]
Palabras clave: Atrial fibrillation , Computer simulation , Structural remodeling , Myofibroblast , Vulnerability
Derechos de uso: Reconocimiento (by)
Ítems relacionados: https://riunet.upv.es/handle/10251/120395
Fuente:
Frontiers in Physiology. (issn: 1664-042X )
DOI: 10.3389/fphys.2019.00847
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphys.2019.00847
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/
info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/
Agradecimientos:
This work was supported by the "Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2013-2016" from the Ministerio de Economia, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional ...[+]
Tipo: Artículo

References

Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., … Trayanova, N. A. (2012). The Role of Fibroblasts in Complex Fractionated Electrograms During Persistent/Permanent Atrial Fibrillation. Circulation Research, 110(2), 275-284. doi:10.1161/circresaha.111.255026

Kelley, K. W. (2008). NIH public access policy. Brain, Behavior, and Immunity, 22(5), 629. doi:10.1016/j.bbi.2008.05.010

Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714 [+]
Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., … Trayanova, N. A. (2012). The Role of Fibroblasts in Complex Fractionated Electrograms During Persistent/Permanent Atrial Fibrillation. Circulation Research, 110(2), 275-284. doi:10.1161/circresaha.111.255026

Kelley, K. W. (2008). NIH public access policy. Brain, Behavior, and Immunity, 22(5), 629. doi:10.1016/j.bbi.2008.05.010

Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714

Burstein, B., & Nattel, S. (2008). Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51(8), 802-809. doi:10.1016/j.jacc.2007.09.064

BURSTEIN, B., QI, X., YEH, Y., CALDERONE, A., & NATTEL, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling☆. Cardiovascular Research, 76(3), 442-452. doi:10.1016/j.cardiores.2007.07.013

CAMELLITI, P., BORG, T., & KOHL, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65(1), 40-51. doi:10.1016/j.cardiores.2004.08.020

Camelliti, P. (2004). Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 62(2), 415-425. doi:10.1016/j.cardiores.2004.01.027

Campos, F. O., Shiferaw, Y., Weber dos Santos, R., Plank, G., & Bishop, M. J. (2018). Microscopic Isthmuses and Fibrosis Within the Border Zone of Infarcted Hearts Promote Calcium-Mediated Ectopy and Conduction Block. Frontiers in Physics, 6. doi:10.3389/fphy.2018.00057

Chacar, S., Farès, N., Bois, P., & Faivre, J.-F. (2016). Basic Signaling in Cardiac Fibroblasts. Journal of Cellular Physiology, 232(4), 725-730. doi:10.1002/jcp.25624

Chatelier, A., Mercier, A., Tremblier, B., Thériault, O., Moubarak, M., Benamer, N., … Faivre, J. F. (2012). A distinctde novoexpression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. The Journal of Physiology, 590(17), 4307-4319. doi:10.1113/jphysiol.2012.233593

Colman, M. A., Varela, M., Hancox, J. C., Zhang, H., & Aslanidi, O. V. (2014). Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace, 16(3), 416-423. doi:10.1093/europace/eut349

Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301

De Coster, T., Claus, P., Kazbanov, I. V., Haemers, P., Willems, R., Sipido, K. R., & Panfilov, A. V. (2018). Arrhythmogenicity of fibro-fatty infiltrations. Scientific Reports, 8(1). doi:10.1038/s41598-018-20450-w

Ehrlich, J. R., Cha, T.-J., Zhang, L., Chartier, D., Melnyk, P., Hohnloser, S. H., & Nattel, S. (2003). Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. The Journal of Physiology, 551(3), 801-813. doi:10.1113/jphysiol.2003.046417

Everett, T. H., & Olgin, J. E. (2007). Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm, 4(3), S24-S27. doi:10.1016/j.hrthm.2006.12.040

Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573

Fukumoto, K., Habibi, M., Ipek, E. G., Zahid, S., Khurram, I. M., Zimmerman, S. L., … Nazarian, S. (2016). Association of Left Atrial Local Conduction Velocity With Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients With Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(3). doi:10.1161/circep.115.002897

Gaspo, R., Bosch, R. F., Talajic, M., & Nattel, S. (1997). Functional Mechanisms Underlying Tachycardia-Induced Sustained Atrial Fibrillation in a Chronic Dog Model. Circulation, 96(11), 4027-4035. doi:10.1161/01.cir.96.11.4027

Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c

Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273

Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602

Grand, T., Salvarani, N., Jousset, F., & Rohr, S. (2014). Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress. Cardiovascular Research, 104(3), 489-500. doi:10.1093/cvr/cvu227

Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164

David M. Harrild, Craig S. Henrique. (2000). A Computer Model of Normal Conduction in the Human Atria. Circulation Research, 87(7). doi:10.1161/01.res.87.7.e25

Hulsmans, M., Clauss, S., Xiao, L., Aguirre, A. D., King, K. R., Hanley, A., … Nahrendorf, M. (2017). Macrophages Facilitate Electrical Conduction in the Heart. Cell, 169(3), 510-522.e20. doi:10.1016/j.cell.2017.03.050

Iwasaki, Y., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial Fibrillation Pathophysiology. Circulation, 124(20), 2264-2274. doi:10.1161/circulationaha.111.019893

Jacquemet, V., & Henriquez, C. S. (2007). Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation. EP Europace, 9(suppl_6), vi29-vi37. doi:10.1093/europace/eum207

Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007

Jacquemet, V., & Henriquez, C. S. (2009). Modulation of Conduction Velocity by Nonmyocytes in the Low Coupling Regime. IEEE Transactions on Biomedical Engineering, 56(3), 893-896. doi:10.1109/tbme.2008.2006028

Jalife, J., & Kaur, K. (2015). Atrial remodeling, fibrosis, and atrial fibrillation. Trends in Cardiovascular Medicine, 25(6), 475-484. doi:10.1016/j.tcm.2014.12.015

Jousset, F., Maguy, A., Rohr, S., & Kucera, J. P. (2016). Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00496

Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295

Kohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096

Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024

Kohl, P., Kamkin, A., Kiseleva, I., & Noble, D. (1994). Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Experimental Physiology, 79(6), 943-956. doi:10.1113/expphysiol.1994.sp003819

Koivumäki, J. T., Clark, R. B., Belke, D., Kondo, C., Fedak, P. W. M., Maleckar, M. M. C., & Giles, W. R. (2014). Na+ current expression in human atrial myofibroblasts: identity and functional roles. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00275

Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620

Koivumäki, J. T., Korhonen, T., & Tavi, P. (2011). Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study. PLoS Computational Biology, 7(1), e1001067. doi:10.1371/journal.pcbi.1001067

Krogh-Madsen, T., Abbott, G. W., & Christini, D. J. (2012). Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study. PLoS Computational Biology, 8(2), e1002390. doi:10.1371/journal.pcbi.1002390

Krueger, M. W., Seemann, G., Rhode, K., Keller, D. U. J., Schilling, C., Arujuna, A., … Dossel, O. (2013). Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation. IEEE Transactions on Medical Imaging, 32(1), 73-84. doi:10.1109/tmi.2012.2201948

Krueger, M. W., Dorn, A., Keller, D. U. J., Holmqvist, F., Carlson, J., Platonov, P. G., … Dössel, O. (2013). In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical & Biological Engineering & Computing, 51(10), 1105-1119. doi:10.1007/s11517-013-1090-1

Krul, S. P. J., Berger, W. R., Smit, N. W., van Amersfoorth, S. C. M., Driessen, A. H. G., van Boven, W. J., … de Groot, J. R. (2015). Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(2), 288-295. doi:10.1161/circep.114.001752

Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410

Majumder, R., Nayak, A. R., & Pandit, R. (2011). Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture. PLoS ONE, 6(4), e18052. doi:10.1371/journal.pone.0018052

Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054

Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J. F., Jalife, J., … Saiz, J. (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLOS Computational Biology, 14(3), e1006017. doi:10.1371/journal.pcbi.1006017

McArthur, L., Chilton, L., Smith, G. L., & Nicklin, S. A. (2015). Electrical consequences of cardiac myocyte: fibroblast coupling. Biochemical Society Transactions, 43(3), 513-518. doi:10.1042/bst20150035

McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2012). Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. Journal of Electrocardiology, 45(6), 640-645. doi:10.1016/j.jelectrocard.2012.08.005

McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 104(12), 2764-2773. doi:10.1016/j.bpj.2013.05.025

Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3

Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474

Nattel, S. (2017). Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC: Clinical Electrophysiology, 3(5), 425-435. doi:10.1016/j.jacep.2017.03.002

Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564

Nattel, S., & Dobrev, D. (2017). Controversies About Atrial Fibrillation Mechanisms. Circulation Research, 120(9), 1396-1398. doi:10.1161/circresaha.116.310489

Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292

Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63

Poulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., & Ravens, U. (2016). Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiological Reports, 4(2), e12681. doi:10.14814/phy2.12681

Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114

Rohr, S. (2009). Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? Heart Rhythm, 6(6), 848-856. doi:10.1016/j.hrthm.2009.02.038

Rohr, S. (2011). Cardiac Fibroblasts in Cell Culture Systems: Myofibroblasts All Along? Journal of Cardiovascular Pharmacology, 57(4), 389-399. doi:10.1097/fjc.0b013e3182137e17

Roney, C. H., Bayer, J. D., Cochet, H., Meo, M., Dubois, R., Jaïs, P., & Vigmond, E. J. (2018). Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLOS Computational Biology, 14(5), e1006166. doi:10.1371/journal.pcbi.1006166

Roney, C. H., Bayer, J. D., Zahid, S., Meo, M., Boyle, P. M. J., Trayanova, N. A., … Vigmond, E. J. (2016). Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. EP Europace, 18(suppl_4), iv146-iv155. doi:10.1093/europace/euw365

Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959

Roy, A., Varela, M., & Aslanidi, O. (2018). Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01352

Sabir, M. A., Sosulski, F. W., & Finlayson, A. J. (1974). Chlorogenic acid-protein interactions in sunflower. Journal of Agricultural and Food Chemistry, 22(4), 575-578. doi:10.1021/jf60194a052

Sachse, F. B., Moreno, A. P., & Abildskov, J. A. (2007). Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes. Annals of Biomedical Engineering, 36(1), 41-56. doi:10.1007/s10439-007-9405-8

Saha, M., Roney, C. H., Bayer, J. D., Meo, M., Cochet, H., Dubois, R., & Vigmond, E. J. (2018). Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01207

Salvarani, N., Maguy, A., De Simone, S. A., Miragoli, M., Jousset, F., & Rohr, S. (2017). TGF-β1(Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity. Circulation: Arrhythmia and Electrophysiology, 10(5). doi:10.1161/circep.116.004567

Sanchez-Quintana, D., Ramon Lopez-Mínguez, J., Pizarro, G., Murillo, M., & Angel Cabrera, J. (2012). Triggers and Anatomical Substrates in the Genesis and Perpetuation of Atrial Fibrillation. Current Cardiology Reviews, 8(4), 310-326. doi:10.2174/157340312803760721

Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophysical Journal, 70(3), 1494-1504. doi:10.1016/s0006-3495(96)79711-4

Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985

Tanaka, K., Zlochiver, S., Vikstrom, K. L., Yamazaki, M., Moreno, J., Klos, M., … Kalifa, J. (2007). Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure. Circulation Research, 101(8), 839-847. doi:10.1161/circresaha.107.153858

Ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology, 286(4), H1573-H1589. doi:10.1152/ajpheart.00794.2003

Varela, M., Colman, M. A., Hancox, J. C., & Aslanidi, O. V. (2016). Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models. PLOS Computational Biology, 12(12), e1005245. doi:10.1371/journal.pcbi.1005245

Vasquez, C., Moreno, A. P., & Berbari, F. J. (s. f.). Modeling fibroblast-mediated conduction in the ventricle. Computers in Cardiology, 2004. doi:10.1109/cic.2004.1442944

Verheule, S., Eckstein, J., Linz, D., Maesen, B., Bidar, E., Gharaviri, A., & Schotten, U. (2014). Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 173-185. doi:10.1016/j.pbiomolbio.2014.07.007

Waks, J. W., & Josephson, M. E. (2014). Mechanisms of Atrial Fibrillation – Reentry, Rotors and Reality. Arrhythmia & Electrophysiology Review, 3(2), 90. doi:10.15420/aer.2014.3.2.90

Warren, M., Guha, P. K., Berenfeld, O., Zaitsev, A., Anumonwo, J. M. B., Dhamoon, A. S., … Jalife, J. (2003). Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 14(6), 621-631. doi:10.1046/j.1540-8167.2003.03006.x

Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., & Seemann, G. (2013). Benchmarking electrophysiological models of human atrial myocytes. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00487

Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J. N., & Qu, Z. (2009). Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 6(11), 1641-1649. doi:10.1016/j.hrthm.2009.08.003

Yamazaki, M., Mironov, S., Taravant, C., Brec, J., Vaquero, L. M., Bandaru, K., … Kalifa, J. (2012). Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 94(1), 48-57. doi:10.1093/cvr/cvr357

Yue, L., Xie, J., & Nattel, S. (2010). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89(4), 744-753. doi:10.1093/cvr/cvq329

Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., … Trayanova, N. A. (2016). Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443-454. doi:10.1093/cvr/cvw073

Zhan, H., Xia, L., Shou, G., Zang, Y., Liu, F., & Crozier, S. (2014). Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. Journal of Zhejiang University SCIENCE B, 15(3), 225-242. doi:10.1631/jzus.b1300156

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem