- -

Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-Arciniegas, Jorge Patricio es_ES
dc.contributor.author Gomez, Juan F es_ES
dc.contributor.author Martínez-Mateu, Laura es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Trenor Gomis, Beatriz Ana es_ES
dc.date.accessioned 2020-05-19T03:02:40Z
dc.date.available 2020-05-19T03:02:40Z
dc.date.issued 2019-07-04 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/143622
dc.description.abstract [EN] Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural remodeling, which involves fibroblast proliferation and differentiation, modifying the substrate for AP propagation. The aim of this study was to analyze the effects on the AP of fibroblast-myocyte coupling during AF and its propagation in different regions of the atria. Methods: Isolated myocytes were coupled to different numbers of fibroblasts using the established AP models and tissue simulations were performed by randomly distributing fibroblasts. Fibroblast formulations were updated to match recent experimental data. Major ion current conductances of the myocyte model were modified to simulate AP heterogeneity in four different atrial regions (right atrium posterior wall, crista terminalis, left atrium posterior wall, and pulmonary vein) according to experimental and computational studies. Results: The results of the coupled myocyte-fibroblast simulations suggest that a more depolarized membrane potential and higher fibroblast membrane capacitance have a greater impact on AP duration and myocyte maximum depolarization velocity. The number of coupled fibroblasts and the stimulation frequency are determining factors in altering myocyte AP. Strand simulations show that conduction velocity tends to homogenize in all regions, while the left atrium is more likely to be affected by fibroblast and AP propagation block is more likely to occur. The pulmonary vein is the most affected region, even at low fibroblast densities. In 2D sheets with randomly placed fibroblasts, wavebreaks are observed in the low density (10%) central fibrotic zone and when fibroblast density increases (40%) propagation in the fibrotic region is practically blocked. At densities of 10 and 20% the width of the vulnerable window increases with respect to control but is decreased at 40%. Conclusion: Myocyte-fibroblast coupling characteristics heterogeneously affect AP propagation and features in the different atrial zones, and myocytes from the left atria are more sensitive to fibroblast coupling. es_ES
dc.description.sponsorship This work was supported by the "Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2013-2016" from the Ministerio de Economia, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEU 2016/088). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.relation.uri https://riunet.upv.es/handle/10251/120395
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Computer simulation es_ES
dc.subject Structural remodeling es_ES
dc.subject Myofibroblast es_ES
dc.subject Vulnerability es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2019.00847 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Sánchez-Arciniegas, JP.; Gomez, JF.; Martínez-Mateu, L.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2019). Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Frontiers in Physiology. 10:1-13. https://doi.org/10.3389/fphys.2019.00847 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2019.00847 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.pmid 31333496 es_ES
dc.identifier.pmcid PMC6620707 es_ES
dc.relation.pasarela S\405440 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., … Trayanova, N. A. (2012). The Role of Fibroblasts in Complex Fractionated Electrograms During Persistent/Permanent Atrial Fibrillation. Circulation Research, 110(2), 275-284. doi:10.1161/circresaha.111.255026 es_ES
dc.description.references Kelley, K. W. (2008). NIH public access policy. Brain, Behavior, and Immunity, 22(5), 629. doi:10.1016/j.bbi.2008.05.010 es_ES
dc.description.references Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714 es_ES
dc.description.references Burstein, B., & Nattel, S. (2008). Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51(8), 802-809. doi:10.1016/j.jacc.2007.09.064 es_ES
dc.description.references BURSTEIN, B., QI, X., YEH, Y., CALDERONE, A., & NATTEL, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling☆. Cardiovascular Research, 76(3), 442-452. doi:10.1016/j.cardiores.2007.07.013 es_ES
dc.description.references CAMELLITI, P., BORG, T., & KOHL, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65(1), 40-51. doi:10.1016/j.cardiores.2004.08.020 es_ES
dc.description.references Camelliti, P. (2004). Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 62(2), 415-425. doi:10.1016/j.cardiores.2004.01.027 es_ES
dc.description.references Campos, F. O., Shiferaw, Y., Weber dos Santos, R., Plank, G., & Bishop, M. J. (2018). Microscopic Isthmuses and Fibrosis Within the Border Zone of Infarcted Hearts Promote Calcium-Mediated Ectopy and Conduction Block. Frontiers in Physics, 6. doi:10.3389/fphy.2018.00057 es_ES
dc.description.references Chacar, S., Farès, N., Bois, P., & Faivre, J.-F. (2016). Basic Signaling in Cardiac Fibroblasts. Journal of Cellular Physiology, 232(4), 725-730. doi:10.1002/jcp.25624 es_ES
dc.description.references Chatelier, A., Mercier, A., Tremblier, B., Thériault, O., Moubarak, M., Benamer, N., … Faivre, J. F. (2012). A distinctde novoexpression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. The Journal of Physiology, 590(17), 4307-4319. doi:10.1113/jphysiol.2012.233593 es_ES
dc.description.references Colman, M. A., Varela, M., Hancox, J. C., Zhang, H., & Aslanidi, O. V. (2014). Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace, 16(3), 416-423. doi:10.1093/europace/eut349 es_ES
dc.description.references Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 es_ES
dc.description.references De Coster, T., Claus, P., Kazbanov, I. V., Haemers, P., Willems, R., Sipido, K. R., & Panfilov, A. V. (2018). Arrhythmogenicity of fibro-fatty infiltrations. Scientific Reports, 8(1). doi:10.1038/s41598-018-20450-w es_ES
dc.description.references Ehrlich, J. R., Cha, T.-J., Zhang, L., Chartier, D., Melnyk, P., Hohnloser, S. H., & Nattel, S. (2003). Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. The Journal of Physiology, 551(3), 801-813. doi:10.1113/jphysiol.2003.046417 es_ES
dc.description.references Everett, T. H., & Olgin, J. E. (2007). Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm, 4(3), S24-S27. doi:10.1016/j.hrthm.2006.12.040 es_ES
dc.description.references Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 es_ES
dc.description.references Fukumoto, K., Habibi, M., Ipek, E. G., Zahid, S., Khurram, I. M., Zimmerman, S. L., … Nazarian, S. (2016). Association of Left Atrial Local Conduction Velocity With Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients With Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(3). doi:10.1161/circep.115.002897 es_ES
dc.description.references Gaspo, R., Bosch, R. F., Talajic, M., & Nattel, S. (1997). Functional Mechanisms Underlying Tachycardia-Induced Sustained Atrial Fibrillation in a Chronic Dog Model. Circulation, 96(11), 4027-4035. doi:10.1161/01.cir.96.11.4027 es_ES
dc.description.references Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c es_ES
dc.description.references Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273 es_ES
dc.description.references Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602 es_ES
dc.description.references Grand, T., Salvarani, N., Jousset, F., & Rohr, S. (2014). Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress. Cardiovascular Research, 104(3), 489-500. doi:10.1093/cvr/cvu227 es_ES
dc.description.references Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164 es_ES
dc.description.references David M. Harrild, Craig S. Henrique. (2000). A Computer Model of Normal Conduction in the Human Atria. Circulation Research, 87(7). doi:10.1161/01.res.87.7.e25 es_ES
dc.description.references Hulsmans, M., Clauss, S., Xiao, L., Aguirre, A. D., King, K. R., Hanley, A., … Nahrendorf, M. (2017). Macrophages Facilitate Electrical Conduction in the Heart. Cell, 169(3), 510-522.e20. doi:10.1016/j.cell.2017.03.050 es_ES
dc.description.references Iwasaki, Y., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial Fibrillation Pathophysiology. Circulation, 124(20), 2264-2274. doi:10.1161/circulationaha.111.019893 es_ES
dc.description.references Jacquemet, V., & Henriquez, C. S. (2007). Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation. EP Europace, 9(suppl_6), vi29-vi37. doi:10.1093/europace/eum207 es_ES
dc.description.references Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007 es_ES
dc.description.references Jacquemet, V., & Henriquez, C. S. (2009). Modulation of Conduction Velocity by Nonmyocytes in the Low Coupling Regime. IEEE Transactions on Biomedical Engineering, 56(3), 893-896. doi:10.1109/tbme.2008.2006028 es_ES
dc.description.references Jalife, J., & Kaur, K. (2015). Atrial remodeling, fibrosis, and atrial fibrillation. Trends in Cardiovascular Medicine, 25(6), 475-484. doi:10.1016/j.tcm.2014.12.015 es_ES
dc.description.references Jousset, F., Maguy, A., Rohr, S., & Kucera, J. P. (2016). Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00496 es_ES
dc.description.references Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 es_ES
dc.description.references Kohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096 es_ES
dc.description.references Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024 es_ES
dc.description.references Kohl, P., Kamkin, A., Kiseleva, I., & Noble, D. (1994). Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Experimental Physiology, 79(6), 943-956. doi:10.1113/expphysiol.1994.sp003819 es_ES
dc.description.references Koivumäki, J. T., Clark, R. B., Belke, D., Kondo, C., Fedak, P. W. M., Maleckar, M. M. C., & Giles, W. R. (2014). Na+ current expression in human atrial myofibroblasts: identity and functional roles. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00275 es_ES
dc.description.references Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620 es_ES
dc.description.references Koivumäki, J. T., Korhonen, T., & Tavi, P. (2011). Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study. PLoS Computational Biology, 7(1), e1001067. doi:10.1371/journal.pcbi.1001067 es_ES
dc.description.references Krogh-Madsen, T., Abbott, G. W., & Christini, D. J. (2012). Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study. PLoS Computational Biology, 8(2), e1002390. doi:10.1371/journal.pcbi.1002390 es_ES
dc.description.references Krueger, M. W., Seemann, G., Rhode, K., Keller, D. U. J., Schilling, C., Arujuna, A., … Dossel, O. (2013). Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation. IEEE Transactions on Medical Imaging, 32(1), 73-84. doi:10.1109/tmi.2012.2201948 es_ES
dc.description.references Krueger, M. W., Dorn, A., Keller, D. U. J., Holmqvist, F., Carlson, J., Platonov, P. G., … Dössel, O. (2013). In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical & Biological Engineering & Computing, 51(10), 1105-1119. doi:10.1007/s11517-013-1090-1 es_ES
dc.description.references Krul, S. P. J., Berger, W. R., Smit, N. W., van Amersfoorth, S. C. M., Driessen, A. H. G., van Boven, W. J., … de Groot, J. R. (2015). Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(2), 288-295. doi:10.1161/circep.114.001752 es_ES
dc.description.references Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 es_ES
dc.description.references Majumder, R., Nayak, A. R., & Pandit, R. (2011). Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture. PLoS ONE, 6(4), e18052. doi:10.1371/journal.pone.0018052 es_ES
dc.description.references Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 es_ES
dc.description.references Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J. F., Jalife, J., … Saiz, J. (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLOS Computational Biology, 14(3), e1006017. doi:10.1371/journal.pcbi.1006017 es_ES
dc.description.references McArthur, L., Chilton, L., Smith, G. L., & Nicklin, S. A. (2015). Electrical consequences of cardiac myocyte: fibroblast coupling. Biochemical Society Transactions, 43(3), 513-518. doi:10.1042/bst20150035 es_ES
dc.description.references McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2012). Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. Journal of Electrocardiology, 45(6), 640-645. doi:10.1016/j.jelectrocard.2012.08.005 es_ES
dc.description.references McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 104(12), 2764-2773. doi:10.1016/j.bpj.2013.05.025 es_ES
dc.description.references Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3 es_ES
dc.description.references Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474 es_ES
dc.description.references Nattel, S. (2017). Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC: Clinical Electrophysiology, 3(5), 425-435. doi:10.1016/j.jacep.2017.03.002 es_ES
dc.description.references Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564 es_ES
dc.description.references Nattel, S., & Dobrev, D. (2017). Controversies About Atrial Fibrillation Mechanisms. Circulation Research, 120(9), 1396-1398. doi:10.1161/circresaha.116.310489 es_ES
dc.description.references Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292 es_ES
dc.description.references Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63 es_ES
dc.description.references Poulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., & Ravens, U. (2016). Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiological Reports, 4(2), e12681. doi:10.14814/phy2.12681 es_ES
dc.description.references Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114 es_ES
dc.description.references Rohr, S. (2009). Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? Heart Rhythm, 6(6), 848-856. doi:10.1016/j.hrthm.2009.02.038 es_ES
dc.description.references Rohr, S. (2011). Cardiac Fibroblasts in Cell Culture Systems: Myofibroblasts All Along? Journal of Cardiovascular Pharmacology, 57(4), 389-399. doi:10.1097/fjc.0b013e3182137e17 es_ES
dc.description.references Roney, C. H., Bayer, J. D., Cochet, H., Meo, M., Dubois, R., Jaïs, P., & Vigmond, E. J. (2018). Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLOS Computational Biology, 14(5), e1006166. doi:10.1371/journal.pcbi.1006166 es_ES
dc.description.references Roney, C. H., Bayer, J. D., Zahid, S., Meo, M., Boyle, P. M. J., Trayanova, N. A., … Vigmond, E. J. (2016). Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. EP Europace, 18(suppl_4), iv146-iv155. doi:10.1093/europace/euw365 es_ES
dc.description.references Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959 es_ES
dc.description.references Roy, A., Varela, M., & Aslanidi, O. (2018). Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01352 es_ES
dc.description.references Sabir, M. A., Sosulski, F. W., & Finlayson, A. J. (1974). Chlorogenic acid-protein interactions in sunflower. Journal of Agricultural and Food Chemistry, 22(4), 575-578. doi:10.1021/jf60194a052 es_ES
dc.description.references Sachse, F. B., Moreno, A. P., & Abildskov, J. A. (2007). Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes. Annals of Biomedical Engineering, 36(1), 41-56. doi:10.1007/s10439-007-9405-8 es_ES
dc.description.references Saha, M., Roney, C. H., Bayer, J. D., Meo, M., Cochet, H., Dubois, R., & Vigmond, E. J. (2018). Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01207 es_ES
dc.description.references Salvarani, N., Maguy, A., De Simone, S. A., Miragoli, M., Jousset, F., & Rohr, S. (2017). TGF-β1(Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity. Circulation: Arrhythmia and Electrophysiology, 10(5). doi:10.1161/circep.116.004567 es_ES
dc.description.references Sanchez-Quintana, D., Ramon Lopez-Mínguez, J., Pizarro, G., Murillo, M., & Angel Cabrera, J. (2012). Triggers and Anatomical Substrates in the Genesis and Perpetuation of Atrial Fibrillation. Current Cardiology Reviews, 8(4), 310-326. doi:10.2174/157340312803760721 es_ES
dc.description.references Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophysical Journal, 70(3), 1494-1504. doi:10.1016/s0006-3495(96)79711-4 es_ES
dc.description.references Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985 es_ES
dc.description.references Tanaka, K., Zlochiver, S., Vikstrom, K. L., Yamazaki, M., Moreno, J., Klos, M., … Kalifa, J. (2007). Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure. Circulation Research, 101(8), 839-847. doi:10.1161/circresaha.107.153858 es_ES
dc.description.references Ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology, 286(4), H1573-H1589. doi:10.1152/ajpheart.00794.2003 es_ES
dc.description.references Varela, M., Colman, M. A., Hancox, J. C., & Aslanidi, O. V. (2016). Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models. PLOS Computational Biology, 12(12), e1005245. doi:10.1371/journal.pcbi.1005245 es_ES
dc.description.references Vasquez, C., Moreno, A. P., & Berbari, F. J. (s. f.). Modeling fibroblast-mediated conduction in the ventricle. Computers in Cardiology, 2004. doi:10.1109/cic.2004.1442944 es_ES
dc.description.references Verheule, S., Eckstein, J., Linz, D., Maesen, B., Bidar, E., Gharaviri, A., & Schotten, U. (2014). Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 173-185. doi:10.1016/j.pbiomolbio.2014.07.007 es_ES
dc.description.references Waks, J. W., & Josephson, M. E. (2014). Mechanisms of Atrial Fibrillation – Reentry, Rotors and Reality. Arrhythmia & Electrophysiology Review, 3(2), 90. doi:10.15420/aer.2014.3.2.90 es_ES
dc.description.references Warren, M., Guha, P. K., Berenfeld, O., Zaitsev, A., Anumonwo, J. M. B., Dhamoon, A. S., … Jalife, J. (2003). Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 14(6), 621-631. doi:10.1046/j.1540-8167.2003.03006.x es_ES
dc.description.references Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., & Seemann, G. (2013). Benchmarking electrophysiological models of human atrial myocytes. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00487 es_ES
dc.description.references Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J. N., & Qu, Z. (2009). Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 6(11), 1641-1649. doi:10.1016/j.hrthm.2009.08.003 es_ES
dc.description.references Yamazaki, M., Mironov, S., Taravant, C., Brec, J., Vaquero, L. M., Bandaru, K., … Kalifa, J. (2012). Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 94(1), 48-57. doi:10.1093/cvr/cvr357 es_ES
dc.description.references Yue, L., Xie, J., & Nattel, S. (2010). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89(4), 744-753. doi:10.1093/cvr/cvq329 es_ES
dc.description.references Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., … Trayanova, N. A. (2016). Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443-454. doi:10.1093/cvr/cvw073 es_ES
dc.description.references Zhan, H., Xia, L., Shou, G., Zang, Y., Liu, F., & Crozier, S. (2014). Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. Journal of Zhejiang University SCIENCE B, 15(3), 225-242. doi:10.1631/jzus.b1300156 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem