Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Arciniegas, Jorge Patricio | es_ES |
dc.contributor.author | Gomez, Juan F | es_ES |
dc.contributor.author | Martínez-Mateu, Laura | es_ES |
dc.contributor.author | Romero Pérez, Lucia | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.contributor.author | Trenor Gomis, Beatriz Ana | es_ES |
dc.date.accessioned | 2020-05-19T03:02:40Z | |
dc.date.available | 2020-05-19T03:02:40Z | |
dc.date.issued | 2019-07-04 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143622 | |
dc.description.abstract | [EN] Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural remodeling, which involves fibroblast proliferation and differentiation, modifying the substrate for AP propagation. The aim of this study was to analyze the effects on the AP of fibroblast-myocyte coupling during AF and its propagation in different regions of the atria. Methods: Isolated myocytes were coupled to different numbers of fibroblasts using the established AP models and tissue simulations were performed by randomly distributing fibroblasts. Fibroblast formulations were updated to match recent experimental data. Major ion current conductances of the myocyte model were modified to simulate AP heterogeneity in four different atrial regions (right atrium posterior wall, crista terminalis, left atrium posterior wall, and pulmonary vein) according to experimental and computational studies. Results: The results of the coupled myocyte-fibroblast simulations suggest that a more depolarized membrane potential and higher fibroblast membrane capacitance have a greater impact on AP duration and myocyte maximum depolarization velocity. The number of coupled fibroblasts and the stimulation frequency are determining factors in altering myocyte AP. Strand simulations show that conduction velocity tends to homogenize in all regions, while the left atrium is more likely to be affected by fibroblast and AP propagation block is more likely to occur. The pulmonary vein is the most affected region, even at low fibroblast densities. In 2D sheets with randomly placed fibroblasts, wavebreaks are observed in the low density (10%) central fibrotic zone and when fibroblast density increases (40%) propagation in the fibrotic region is practically blocked. At densities of 10 and 20% the width of the vulnerable window increases with respect to control but is decreased at 40%. Conclusion: Myocyte-fibroblast coupling characteristics heterogeneously affect AP propagation and features in the different atrial zones, and myocytes from the left atria are more sensitive to fibroblast coupling. | es_ES |
dc.description.sponsorship | This work was supported by the "Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2013-2016" from the Ministerio de Economia, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEU 2016/088). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.relation.uri | https://riunet.upv.es/handle/10251/120395 | |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Computer simulation | es_ES |
dc.subject | Structural remodeling | es_ES |
dc.subject | Myofibroblast | es_ES |
dc.subject | Vulnerability | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2019.00847 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Sánchez-Arciniegas, JP.; Gomez, JF.; Martínez-Mateu, L.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2019). Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Frontiers in Physiology. 10:1-13. https://doi.org/10.3389/fphys.2019.00847 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2019.00847 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.pmid | 31333496 | es_ES |
dc.identifier.pmcid | PMC6620707 | es_ES |
dc.relation.pasarela | S\405440 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., … Trayanova, N. A. (2012). The Role of Fibroblasts in Complex Fractionated Electrograms During Persistent/Permanent Atrial Fibrillation. Circulation Research, 110(2), 275-284. doi:10.1161/circresaha.111.255026 | es_ES |
dc.description.references | Kelley, K. W. (2008). NIH public access policy. Brain, Behavior, and Immunity, 22(5), 629. doi:10.1016/j.bbi.2008.05.010 | es_ES |
dc.description.references | Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714 | es_ES |
dc.description.references | Burstein, B., & Nattel, S. (2008). Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51(8), 802-809. doi:10.1016/j.jacc.2007.09.064 | es_ES |
dc.description.references | BURSTEIN, B., QI, X., YEH, Y., CALDERONE, A., & NATTEL, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling☆. Cardiovascular Research, 76(3), 442-452. doi:10.1016/j.cardiores.2007.07.013 | es_ES |
dc.description.references | CAMELLITI, P., BORG, T., & KOHL, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65(1), 40-51. doi:10.1016/j.cardiores.2004.08.020 | es_ES |
dc.description.references | Camelliti, P. (2004). Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 62(2), 415-425. doi:10.1016/j.cardiores.2004.01.027 | es_ES |
dc.description.references | Campos, F. O., Shiferaw, Y., Weber dos Santos, R., Plank, G., & Bishop, M. J. (2018). Microscopic Isthmuses and Fibrosis Within the Border Zone of Infarcted Hearts Promote Calcium-Mediated Ectopy and Conduction Block. Frontiers in Physics, 6. doi:10.3389/fphy.2018.00057 | es_ES |
dc.description.references | Chacar, S., Farès, N., Bois, P., & Faivre, J.-F. (2016). Basic Signaling in Cardiac Fibroblasts. Journal of Cellular Physiology, 232(4), 725-730. doi:10.1002/jcp.25624 | es_ES |
dc.description.references | Chatelier, A., Mercier, A., Tremblier, B., Thériault, O., Moubarak, M., Benamer, N., … Faivre, J. F. (2012). A distinctde novoexpression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. The Journal of Physiology, 590(17), 4307-4319. doi:10.1113/jphysiol.2012.233593 | es_ES |
dc.description.references | Colman, M. A., Varela, M., Hancox, J. C., Zhang, H., & Aslanidi, O. V. (2014). Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace, 16(3), 416-423. doi:10.1093/europace/eut349 | es_ES |
dc.description.references | Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 | es_ES |
dc.description.references | De Coster, T., Claus, P., Kazbanov, I. V., Haemers, P., Willems, R., Sipido, K. R., & Panfilov, A. V. (2018). Arrhythmogenicity of fibro-fatty infiltrations. Scientific Reports, 8(1). doi:10.1038/s41598-018-20450-w | es_ES |
dc.description.references | Ehrlich, J. R., Cha, T.-J., Zhang, L., Chartier, D., Melnyk, P., Hohnloser, S. H., & Nattel, S. (2003). Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. The Journal of Physiology, 551(3), 801-813. doi:10.1113/jphysiol.2003.046417 | es_ES |
dc.description.references | Everett, T. H., & Olgin, J. E. (2007). Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm, 4(3), S24-S27. doi:10.1016/j.hrthm.2006.12.040 | es_ES |
dc.description.references | Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 | es_ES |
dc.description.references | Fukumoto, K., Habibi, M., Ipek, E. G., Zahid, S., Khurram, I. M., Zimmerman, S. L., … Nazarian, S. (2016). Association of Left Atrial Local Conduction Velocity With Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients With Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(3). doi:10.1161/circep.115.002897 | es_ES |
dc.description.references | Gaspo, R., Bosch, R. F., Talajic, M., & Nattel, S. (1997). Functional Mechanisms Underlying Tachycardia-Induced Sustained Atrial Fibrillation in a Chronic Dog Model. Circulation, 96(11), 4027-4035. doi:10.1161/01.cir.96.11.4027 | es_ES |
dc.description.references | Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c | es_ES |
dc.description.references | Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273 | es_ES |
dc.description.references | Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602 | es_ES |
dc.description.references | Grand, T., Salvarani, N., Jousset, F., & Rohr, S. (2014). Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress. Cardiovascular Research, 104(3), 489-500. doi:10.1093/cvr/cvu227 | es_ES |
dc.description.references | Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164 | es_ES |
dc.description.references | David M. Harrild, Craig S. Henrique. (2000). A Computer Model of Normal Conduction in the Human Atria. Circulation Research, 87(7). doi:10.1161/01.res.87.7.e25 | es_ES |
dc.description.references | Hulsmans, M., Clauss, S., Xiao, L., Aguirre, A. D., King, K. R., Hanley, A., … Nahrendorf, M. (2017). Macrophages Facilitate Electrical Conduction in the Heart. Cell, 169(3), 510-522.e20. doi:10.1016/j.cell.2017.03.050 | es_ES |
dc.description.references | Iwasaki, Y., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial Fibrillation Pathophysiology. Circulation, 124(20), 2264-2274. doi:10.1161/circulationaha.111.019893 | es_ES |
dc.description.references | Jacquemet, V., & Henriquez, C. S. (2007). Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation. EP Europace, 9(suppl_6), vi29-vi37. doi:10.1093/europace/eum207 | es_ES |
dc.description.references | Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007 | es_ES |
dc.description.references | Jacquemet, V., & Henriquez, C. S. (2009). Modulation of Conduction Velocity by Nonmyocytes in the Low Coupling Regime. IEEE Transactions on Biomedical Engineering, 56(3), 893-896. doi:10.1109/tbme.2008.2006028 | es_ES |
dc.description.references | Jalife, J., & Kaur, K. (2015). Atrial remodeling, fibrosis, and atrial fibrillation. Trends in Cardiovascular Medicine, 25(6), 475-484. doi:10.1016/j.tcm.2014.12.015 | es_ES |
dc.description.references | Jousset, F., Maguy, A., Rohr, S., & Kucera, J. P. (2016). Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00496 | es_ES |
dc.description.references | Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 | es_ES |
dc.description.references | Kohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096 | es_ES |
dc.description.references | Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024 | es_ES |
dc.description.references | Kohl, P., Kamkin, A., Kiseleva, I., & Noble, D. (1994). Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Experimental Physiology, 79(6), 943-956. doi:10.1113/expphysiol.1994.sp003819 | es_ES |
dc.description.references | Koivumäki, J. T., Clark, R. B., Belke, D., Kondo, C., Fedak, P. W. M., Maleckar, M. M. C., & Giles, W. R. (2014). Na+ current expression in human atrial myofibroblasts: identity and functional roles. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00275 | es_ES |
dc.description.references | Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620 | es_ES |
dc.description.references | Koivumäki, J. T., Korhonen, T., & Tavi, P. (2011). Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study. PLoS Computational Biology, 7(1), e1001067. doi:10.1371/journal.pcbi.1001067 | es_ES |
dc.description.references | Krogh-Madsen, T., Abbott, G. W., & Christini, D. J. (2012). Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study. PLoS Computational Biology, 8(2), e1002390. doi:10.1371/journal.pcbi.1002390 | es_ES |
dc.description.references | Krueger, M. W., Seemann, G., Rhode, K., Keller, D. U. J., Schilling, C., Arujuna, A., … Dossel, O. (2013). Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation. IEEE Transactions on Medical Imaging, 32(1), 73-84. doi:10.1109/tmi.2012.2201948 | es_ES |
dc.description.references | Krueger, M. W., Dorn, A., Keller, D. U. J., Holmqvist, F., Carlson, J., Platonov, P. G., … Dössel, O. (2013). In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical & Biological Engineering & Computing, 51(10), 1105-1119. doi:10.1007/s11517-013-1090-1 | es_ES |
dc.description.references | Krul, S. P. J., Berger, W. R., Smit, N. W., van Amersfoorth, S. C. M., Driessen, A. H. G., van Boven, W. J., … de Groot, J. R. (2015). Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(2), 288-295. doi:10.1161/circep.114.001752 | es_ES |
dc.description.references | Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 | es_ES |
dc.description.references | Majumder, R., Nayak, A. R., & Pandit, R. (2011). Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture. PLoS ONE, 6(4), e18052. doi:10.1371/journal.pone.0018052 | es_ES |
dc.description.references | Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 | es_ES |
dc.description.references | Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J. F., Jalife, J., … Saiz, J. (2018). Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study. PLOS Computational Biology, 14(3), e1006017. doi:10.1371/journal.pcbi.1006017 | es_ES |
dc.description.references | McArthur, L., Chilton, L., Smith, G. L., & Nicklin, S. A. (2015). Electrical consequences of cardiac myocyte: fibroblast coupling. Biochemical Society Transactions, 43(3), 513-518. doi:10.1042/bst20150035 | es_ES |
dc.description.references | McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2012). Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. Journal of Electrocardiology, 45(6), 640-645. doi:10.1016/j.jelectrocard.2012.08.005 | es_ES |
dc.description.references | McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 104(12), 2764-2773. doi:10.1016/j.bpj.2013.05.025 | es_ES |
dc.description.references | Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3 | es_ES |
dc.description.references | Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474 | es_ES |
dc.description.references | Nattel, S. (2017). Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC: Clinical Electrophysiology, 3(5), 425-435. doi:10.1016/j.jacep.2017.03.002 | es_ES |
dc.description.references | Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564 | es_ES |
dc.description.references | Nattel, S., & Dobrev, D. (2017). Controversies About Atrial Fibrillation Mechanisms. Circulation Research, 120(9), 1396-1398. doi:10.1161/circresaha.116.310489 | es_ES |
dc.description.references | Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292 | es_ES |
dc.description.references | Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63 | es_ES |
dc.description.references | Poulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., & Ravens, U. (2016). Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiological Reports, 4(2), e12681. doi:10.14814/phy2.12681 | es_ES |
dc.description.references | Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114 | es_ES |
dc.description.references | Rohr, S. (2009). Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? Heart Rhythm, 6(6), 848-856. doi:10.1016/j.hrthm.2009.02.038 | es_ES |
dc.description.references | Rohr, S. (2011). Cardiac Fibroblasts in Cell Culture Systems: Myofibroblasts All Along? Journal of Cardiovascular Pharmacology, 57(4), 389-399. doi:10.1097/fjc.0b013e3182137e17 | es_ES |
dc.description.references | Roney, C. H., Bayer, J. D., Cochet, H., Meo, M., Dubois, R., Jaïs, P., & Vigmond, E. J. (2018). Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLOS Computational Biology, 14(5), e1006166. doi:10.1371/journal.pcbi.1006166 | es_ES |
dc.description.references | Roney, C. H., Bayer, J. D., Zahid, S., Meo, M., Boyle, P. M. J., Trayanova, N. A., … Vigmond, E. J. (2016). Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. EP Europace, 18(suppl_4), iv146-iv155. doi:10.1093/europace/euw365 | es_ES |
dc.description.references | Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959 | es_ES |
dc.description.references | Roy, A., Varela, M., & Aslanidi, O. (2018). Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01352 | es_ES |
dc.description.references | Sabir, M. A., Sosulski, F. W., & Finlayson, A. J. (1974). Chlorogenic acid-protein interactions in sunflower. Journal of Agricultural and Food Chemistry, 22(4), 575-578. doi:10.1021/jf60194a052 | es_ES |
dc.description.references | Sachse, F. B., Moreno, A. P., & Abildskov, J. A. (2007). Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes. Annals of Biomedical Engineering, 36(1), 41-56. doi:10.1007/s10439-007-9405-8 | es_ES |
dc.description.references | Saha, M., Roney, C. H., Bayer, J. D., Meo, M., Cochet, H., Dubois, R., & Vigmond, E. J. (2018). Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01207 | es_ES |
dc.description.references | Salvarani, N., Maguy, A., De Simone, S. A., Miragoli, M., Jousset, F., & Rohr, S. (2017). TGF-β1(Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity. Circulation: Arrhythmia and Electrophysiology, 10(5). doi:10.1161/circep.116.004567 | es_ES |
dc.description.references | Sanchez-Quintana, D., Ramon Lopez-Mínguez, J., Pizarro, G., Murillo, M., & Angel Cabrera, J. (2012). Triggers and Anatomical Substrates in the Genesis and Perpetuation of Atrial Fibrillation. Current Cardiology Reviews, 8(4), 310-326. doi:10.2174/157340312803760721 | es_ES |
dc.description.references | Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophysical Journal, 70(3), 1494-1504. doi:10.1016/s0006-3495(96)79711-4 | es_ES |
dc.description.references | Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985 | es_ES |
dc.description.references | Tanaka, K., Zlochiver, S., Vikstrom, K. L., Yamazaki, M., Moreno, J., Klos, M., … Kalifa, J. (2007). Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure. Circulation Research, 101(8), 839-847. doi:10.1161/circresaha.107.153858 | es_ES |
dc.description.references | Ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology, 286(4), H1573-H1589. doi:10.1152/ajpheart.00794.2003 | es_ES |
dc.description.references | Varela, M., Colman, M. A., Hancox, J. C., & Aslanidi, O. V. (2016). Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models. PLOS Computational Biology, 12(12), e1005245. doi:10.1371/journal.pcbi.1005245 | es_ES |
dc.description.references | Vasquez, C., Moreno, A. P., & Berbari, F. J. (s. f.). Modeling fibroblast-mediated conduction in the ventricle. Computers in Cardiology, 2004. doi:10.1109/cic.2004.1442944 | es_ES |
dc.description.references | Verheule, S., Eckstein, J., Linz, D., Maesen, B., Bidar, E., Gharaviri, A., & Schotten, U. (2014). Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 173-185. doi:10.1016/j.pbiomolbio.2014.07.007 | es_ES |
dc.description.references | Waks, J. W., & Josephson, M. E. (2014). Mechanisms of Atrial Fibrillation – Reentry, Rotors and Reality. Arrhythmia & Electrophysiology Review, 3(2), 90. doi:10.15420/aer.2014.3.2.90 | es_ES |
dc.description.references | Warren, M., Guha, P. K., Berenfeld, O., Zaitsev, A., Anumonwo, J. M. B., Dhamoon, A. S., … Jalife, J. (2003). Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 14(6), 621-631. doi:10.1046/j.1540-8167.2003.03006.x | es_ES |
dc.description.references | Wilhelms, M., Hettmann, H., Maleckar, M. M., Koivumäki, J. T., Dössel, O., & Seemann, G. (2013). Benchmarking electrophysiological models of human atrial myocytes. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00487 | es_ES |
dc.description.references | Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J. N., & Qu, Z. (2009). Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 6(11), 1641-1649. doi:10.1016/j.hrthm.2009.08.003 | es_ES |
dc.description.references | Yamazaki, M., Mironov, S., Taravant, C., Brec, J., Vaquero, L. M., Bandaru, K., … Kalifa, J. (2012). Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovascular Research, 94(1), 48-57. doi:10.1093/cvr/cvr357 | es_ES |
dc.description.references | Yue, L., Xie, J., & Nattel, S. (2010). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89(4), 744-753. doi:10.1093/cvr/cvq329 | es_ES |
dc.description.references | Zahid, S., Cochet, H., Boyle, P. M., Schwarz, E. L., Whyte, K. N., Vigmond, E. J., … Trayanova, N. A. (2016). Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443-454. doi:10.1093/cvr/cvw073 | es_ES |
dc.description.references | Zhan, H., Xia, L., Shou, G., Zang, Y., Liu, F., & Crozier, S. (2014). Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. Journal of Zhejiang University SCIENCE B, 15(3), 225-242. doi:10.1631/jzus.b1300156 | es_ES |