Mostrar el registro sencillo del ítem
dc.contributor.author | Vinagre, Blas M. | es_ES |
dc.contributor.author | Feliu Batlle, Vicente | es_ES |
dc.contributor.author | Tejado, Inés | es_ES |
dc.date.accessioned | 2020-05-19T06:04:02Z | |
dc.date.available | 2020-05-19T06:04:02Z | |
dc.date.issued | 2016-07-10 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143636 | |
dc.description.abstract | [ES] El objetivo del presente tutorial de control fraccionario es presentar los fundamentos de esta disciplina y las principales herramientas computacionales disponibles para su uso y aplicación por parte del ingeniero de control. El enfoque escogido pretende hacer accesible desde el primer momento su ubicación en el control clásico y las bases para entender cómo cualquier estrategia de control que haga uso de los operadores derivada y/o integral (es decir, casi todas) puede generalizarse al considerar la posibilidad de utilizar dichos operadores con un orden no necesariamente entero. Los casos de estudio considerados (el doble integrador y el servomecanismo de posición) han sido elegidos no para exponer las bondades del control fraccionario, sino para mostrar la amplitud de posibilidades que proporciona su utilización incluso considerando sistemas extraordinariamente comunes en la literatura de control. | es_ES |
dc.description.abstract | [EN] The purpose of this tutorial on fractional control is to present the foundations of this discipline and the main computational tools available for its use and application by the control engineer. The chosen approach aims to make accessible from the very beginning its location in the classical control and the foundations for a clear understanding on how any control strategy that makes use of the derivative and / or the integral operators (i.e., almost all) can be generalized by considering these operators with not necessarily integer order. The case studies considered (the double integrator and the position servo) have been chosen not to expose the benefits of fractional control, but to show the range of possibilities that provides remarkably even considering its application to systems of common use in the literature of control. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fractional Control | es_ES |
dc.subject | Fractional Systems | es_ES |
dc.subject | Robust Control | es_ES |
dc.subject | Control fraccionario | es_ES |
dc.subject | Sistemas fraccionarios | es_ES |
dc.subject | Control robusto | es_ES |
dc.title | Control fraccionario: fundamentos y guía de uso | es_ES |
dc.title.alternative | Fractional Control: Fundamentals and User Guide | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2016.05.001 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Vinagre, BM.; Feliu Batlle, V.; Tejado, I. (2016). Control fraccionario: fundamentos y guía de uso. Revista Iberoamericana de Automática e Informática industrial. 13(3):265-280. https://doi.org/10.1016/j.riai.2016.05.001 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2016.05.001 | es_ES |
dc.description.upvformatpinicio | 265 | es_ES |
dc.description.upvformatpfin | 280 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9269 | es_ES |
dc.description.references | Astrom, ¨ K. J., Murray, R. M., 2008. Feedback Systems. An Introduction for Scientists and Engineers. Princeton University Press, Princeton. | es_ES |
dc.description.references | Bennett, S., 1993. A History of Control Engineering 1930-1955. Peter Peregrinus (IEE), London. | es_ES |
dc.description.references | Bode, H., 1940. Relations between attenuation and phase in feedback amplifier design. Bell System Technical Journal 19, 421-454. | es_ES |
dc.description.references | Bode, H., 1945. Network Analysis and Feedback Amplifier Design. Van Nostrand. | es_ES |
dc.description.references | Carlson, G. E., Halijak, C., 1961. Simulation of the fractional derivative operator (s) and the fractional integral operator (1/s). In: Proceedings of the Central States Simulation Council Meeting on Extrapolation of Analog Computation Methods. Kansas, USA, pp. 1-22. | es_ES |
dc.description.references | Chen, Y. Q., Petras, ' I., Xue, D., 2009. Fractional order control - A tutorial. In: Proceedings of the American Control Conference (ACC'09). pp. 1397-1411. | es_ES |
dc.description.references | CRONE Group, 2010b. Crone toolbox. URL: http://archive.ims-bordeaux.fr/CRONE/toolbox | es_ES |
dc.description.references | CRONE Group, 2010b. Brief Presentation of the Object Oriented CRONE Toolbox. Version Beta 1. | es_ES |
dc.description.references | CRONE Group, 2010c. CRONE Control Design Module User's Guide. Version 4.0. | es_ES |
dc.description.references | Dormido, S., Pisoni, E., Visioli, A., 2012. Interactive tools for designing fractional-order PID controllers. International Journal of Innovative Computing, Information and Control 8, 7(A), 4570-4590. | es_ES |
dc.description.references | Dugowson, S., 1994. Les differentielles metaphysiques: Histoire et philosophie de la generalisation ' de l'ordre de derivation. Ph.D. thesis, University of Paris. | es_ES |
dc.description.references | Edwards, C., Spurgeon, S. K., 1998. Sliding Mode Control. Theory and Applications. Taylor & Francis Ltd. | es_ES |
dc.description.references | Horowitz, I., 1963. Synthesis of Feedback Systems. Academic Press. | es_ES |
dc.description.references | Horowitz, I., Sidi, M., 1972. Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances. International Journal of Control 16 (2), 287-309. | es_ES |
dc.description.references | HosseinNia, S. H., Sierociuk, D., Calderon, ' A. J., Vinagre, B. M., 2010. Augmented system approach for fractional order SMC of a DC-DC Buck converter. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications (FDA'10). | es_ES |
dc.description.references | HosseinNia, S. H., Tejado, I., Vinagre, B. M., 2013. Fractional-order reset control: Application to a servomotor. Mechatronics 23 (7), 781-788. | es_ES |
dc.description.references | Li, Z., 2015. Fractional order root locus. URL: http://www.mathworks.com/matlabcentral/fileexchange/50458- fractional-order-root-locus | es_ES |
dc.description.references | Li, Z., Liu, L., Dehghan, S., Chen, Y. Q., Xue, D., 2016. A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Control. DOI:10.1080/00207179.2015.1124290. | es_ES |
dc.description.references | Manabe, S., 1961. The non-integer integral and its application to control systems. Japanese Institute of Electrical Engineers Journal 6 (3-4), 83- 87. | es_ES |
dc.description.references | Miller, K., Ross, B., 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York. | es_ES |
dc.description.references | Monje, C. A., Chen, Y. Q., Vinagre, B. M., Xue, D., Feliu, V., 2010. Fractional-order Systems and Controls. Fundamentals and Applications. Springer. | es_ES |
dc.description.references | Monje, C. A., Vinagre, B. M., Feliu, V., Chen, Y. Q., 2008. Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice 16 (7), 798-812. | es_ES |
dc.description.references | Oldham, K., Spanier, J., 2006. The Fractional Calculus. Theory and Applications of Differentiation and Integration of Arbitrary Order. Dover, New York. | es_ES |
dc.description.references | Opdycke, R. R., 1967. An Investigation of the Strait servo. Master Thesis, Kansas State University, Kansas, USA. | es_ES |
dc.description.references | Oustaloup, A., 1991. La Commade CRONE: Commande Robuste d'Ordre Non Entier. Hermes, Paris. | es_ES |
dc.description.references | Petras, I., 2011a. Discrete fractional-order PID controller. URL: http://www.mathworks.com/matlabcentral/fileexchange/33761- discrete-fractional-order-pid-controller | es_ES |
dc.description.references | Petras, I., 2011b. Engineering Education and Research Using MATLAB. InTech, Ch. Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab, pp. 239-264. | es_ES |
dc.description.references | Petras, I., 2015. Non-linear fractional-order PID controller. URL: http://www.mathworks.com/matlabcentral/fileexchange/51190- non-linear-fractional-order-pid-controller | es_ES |
dc.description.references | Podlubny, I., 1999a. Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego. | es_ES |
dc.description.references | Podlubny, I., 1999b. Fractional order systems and PI-lambda-D-mu controllers. IEEE Transactions on Automatic Control 44 (1), 208-214. | es_ES |
dc.description.references | Podlubny, I., Petras, ' I., Vinagre, B. M., O'Leary, P., Dorcak, ' L., 2002. Analogue realizations of fractional-order controllers. Nonlinear Dynamics 29, 281-296. | es_ES |
dc.description.references | Rao, V. G., Bernstein, D. S., 2001. Naive control of the double integrator. IEEE Control Systems Magazine October, 86-97. | es_ES |
dc.description.references | Sierociuk, D., 2003. Fractional states-space toolkit (FSST). URL: http://www.ee.pw.edu.pl/ dsieroci/fsst/fsst.htm | es_ES |
dc.description.references | Stein, G., Athans, M., 1987. The LQR/LTR procedure for multivariable feedback control design. IEEE Transactions on Automatic Control 32, 105-114. | es_ES |
dc.description.references | Tenreiro Machado, J. A., 2011. Communications in nonlinear science and numerical simulation. Root locus of fractional linear systems 16 (10), 3855-3862. | es_ES |
dc.description.references | Tepljakov, A., 2015. FOMCON toolbox reference manual. URL: http://docs.fomcon.net/ | es_ES |
dc.description.references | Tepljakov, A., 2016. FOMCON: Fractional-order modeling and control. (Fecha de consulta: 21/03/16). URL: http://fomcon.net/ | es_ES |
dc.description.references | Tejado, I., HosseinNia, S. H., Vinagre, B. M., 2014. Adaptive gain-order fractional control for network-based applications. Fractional Calculus and Applied Analysis 17 (2), 462-482. | es_ES |
dc.description.references | Tricaud, C., 2008. Solution of fractional optimal control problems. URL: http://www.mathworks.com/matlabcentral/fileexchange/22196- solution-of-fractional-optimal-control-problems | es_ES |
dc.description.references | Tustin, A., Allanson, J. T., Layton, J. M., Jakeways, R. J., 1958. The design of systems for automatic control of the position of massive objects. The Proceedings of the Institution of Electrical Engineers 105. | es_ES |
dc.description.references | Valerio, D., 2005a. Ninteger: Fractional control toolbox for MatLab. URL: http://www.mathworks.com/matlabcentral/fileexchange/8312- ninteger | es_ES |
dc.description.references | Valerio, D., 2005b. Ninteger: Fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm | es_ES |
dc.description.references | Valerio, D., 2005c. Ninteger v. 2.3 - fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/Manual.pdf | es_ES |
dc.description.references | Vilanova, R., Visioli, A., (Eds.), 2012. PID Control in the Third Millennium. Springer, London. | es_ES |
dc.description.references | Vinagre, B. M., Monje, C. A., 2006. Introduccion al control fraccionario. | es_ES |