- -

Control fraccionario: fundamentos y guía de uso

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control fraccionario: fundamentos y guía de uso

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vinagre, Blas M. es_ES
dc.contributor.author Feliu Batlle, Vicente es_ES
dc.contributor.author Tejado, Inés es_ES
dc.date.accessioned 2020-05-19T06:04:02Z
dc.date.available 2020-05-19T06:04:02Z
dc.date.issued 2016-07-10
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143636
dc.description.abstract [ES] El objetivo del presente tutorial de control fraccionario es presentar los fundamentos de esta disciplina y las principales herramientas computacionales disponibles para su uso y aplicación por parte del ingeniero de control. El enfoque escogido pretende hacer accesible desde el primer momento su ubicación en el control clásico y las bases para entender cómo cualquier estrategia de control que haga uso de los operadores derivada y/o integral (es decir, casi todas) puede generalizarse al considerar la posibilidad de utilizar dichos operadores con un orden no necesariamente entero. Los casos de estudio considerados (el doble integrador y el servomecanismo de posición) han sido elegidos no para exponer las bondades del control fraccionario, sino para mostrar la amplitud de posibilidades que proporciona su utilización incluso considerando sistemas extraordinariamente comunes en la literatura de control. es_ES
dc.description.abstract [EN] The purpose of this tutorial on fractional control is to present the foundations of this discipline and the main computational tools available for its use and application by the control engineer. The chosen approach aims to make accessible from the very beginning its location in the classical control and the foundations for a clear understanding on how any control strategy that makes use of the derivative and / or the integral operators (i.e., almost all) can be generalized by considering these operators with not necessarily integer order. The case studies considered (the double integrator and the position servo) have been chosen not to expose the benefits of fractional control, but to show the range of possibilities that provides remarkably even considering its application to systems of common use in the literature of control. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fractional Control es_ES
dc.subject Fractional Systems es_ES
dc.subject Robust Control es_ES
dc.subject Control fraccionario es_ES
dc.subject Sistemas fraccionarios es_ES
dc.subject Control robusto es_ES
dc.title Control fraccionario: fundamentos y guía de uso es_ES
dc.title.alternative Fractional Control: Fundamentals and User Guide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.05.001
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vinagre, BM.; Feliu Batlle, V.; Tejado, I. (2016). Control fraccionario: fundamentos y guía de uso. Revista Iberoamericana de Automática e Informática industrial. 13(3):265-280. https://doi.org/10.1016/j.riai.2016.05.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.05.001 es_ES
dc.description.upvformatpinicio 265 es_ES
dc.description.upvformatpfin 280 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9269 es_ES
dc.description.references Astrom, ¨ K. J., Murray, R. M., 2008. Feedback Systems. An Introduction for Scientists and Engineers. Princeton University Press, Princeton. es_ES
dc.description.references Bennett, S., 1993. A History of Control Engineering 1930-1955. Peter Peregrinus (IEE), London. es_ES
dc.description.references Bode, H., 1940. Relations between attenuation and phase in feedback amplifier design. Bell System Technical Journal 19, 421-454. es_ES
dc.description.references Bode, H., 1945. Network Analysis and Feedback Amplifier Design. Van Nostrand. es_ES
dc.description.references Carlson, G. E., Halijak, C., 1961. Simulation of the fractional derivative operator (s) and the fractional integral operator (1/s). In: Proceedings of the Central States Simulation Council Meeting on Extrapolation of Analog Computation Methods. Kansas, USA, pp. 1-22. es_ES
dc.description.references Chen, Y. Q., Petras, ' I., Xue, D., 2009. Fractional order control - A tutorial. In: Proceedings of the American Control Conference (ACC'09). pp. 1397-1411. es_ES
dc.description.references CRONE Group, 2010b. Crone toolbox. URL: http://archive.ims-bordeaux.fr/CRONE/toolbox es_ES
dc.description.references CRONE Group, 2010b. Brief Presentation of the Object Oriented CRONE Toolbox. Version Beta 1. es_ES
dc.description.references CRONE Group, 2010c. CRONE Control Design Module User's Guide. Version 4.0. es_ES
dc.description.references Dormido, S., Pisoni, E., Visioli, A., 2012. Interactive tools for designing fractional-order PID controllers. International Journal of Innovative Computing, Information and Control 8, 7(A), 4570-4590. es_ES
dc.description.references Dugowson, S., 1994. Les differentielles metaphysiques: Histoire et philosophie de la generalisation ' de l'ordre de derivation. Ph.D. thesis, University of Paris. es_ES
dc.description.references Edwards, C., Spurgeon, S. K., 1998. Sliding Mode Control. Theory and Applications. Taylor & Francis Ltd. es_ES
dc.description.references Horowitz, I., 1963. Synthesis of Feedback Systems. Academic Press. es_ES
dc.description.references Horowitz, I., Sidi, M., 1972. Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances. International Journal of Control 16 (2), 287-309. es_ES
dc.description.references HosseinNia, S. H., Sierociuk, D., Calderon, ' A. J., Vinagre, B. M., 2010. Augmented system approach for fractional order SMC of a DC-DC Buck converter. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications (FDA'10). es_ES
dc.description.references HosseinNia, S. H., Tejado, I., Vinagre, B. M., 2013. Fractional-order reset control: Application to a servomotor. Mechatronics 23 (7), 781-788. es_ES
dc.description.references Li, Z., 2015. Fractional order root locus. URL: http://www.mathworks.com/matlabcentral/fileexchange/50458- fractional-order-root-locus es_ES
dc.description.references Li, Z., Liu, L., Dehghan, S., Chen, Y. Q., Xue, D., 2016. A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Control. DOI:10.1080/00207179.2015.1124290. es_ES
dc.description.references Manabe, S., 1961. The non-integer integral and its application to control systems. Japanese Institute of Electrical Engineers Journal 6 (3-4), 83- 87. es_ES
dc.description.references Miller, K., Ross, B., 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York. es_ES
dc.description.references Monje, C. A., Chen, Y. Q., Vinagre, B. M., Xue, D., Feliu, V., 2010. Fractional-order Systems and Controls. Fundamentals and Applications. Springer. es_ES
dc.description.references Monje, C. A., Vinagre, B. M., Feliu, V., Chen, Y. Q., 2008. Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice 16 (7), 798-812. es_ES
dc.description.references Oldham, K., Spanier, J., 2006. The Fractional Calculus. Theory and Applications of Differentiation and Integration of Arbitrary Order. Dover, New York. es_ES
dc.description.references Opdycke, R. R., 1967. An Investigation of the Strait servo. Master Thesis, Kansas State University, Kansas, USA. es_ES
dc.description.references Oustaloup, A., 1991. La Commade CRONE: Commande Robuste d'Ordre Non Entier. Hermes, Paris. es_ES
dc.description.references Petras, I., 2011a. Discrete fractional-order PID controller. URL: http://www.mathworks.com/matlabcentral/fileexchange/33761- discrete-fractional-order-pid-controller es_ES
dc.description.references Petras, I., 2011b. Engineering Education and Research Using MATLAB. InTech, Ch. Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab, pp. 239-264. es_ES
dc.description.references Petras, I., 2015. Non-linear fractional-order PID controller. URL: http://www.mathworks.com/matlabcentral/fileexchange/51190- non-linear-fractional-order-pid-controller es_ES
dc.description.references Podlubny, I., 1999a. Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego. es_ES
dc.description.references Podlubny, I., 1999b. Fractional order systems and PI-lambda-D-mu controllers. IEEE Transactions on Automatic Control 44 (1), 208-214. es_ES
dc.description.references Podlubny, I., Petras, ' I., Vinagre, B. M., O'Leary, P., Dorcak, ' L., 2002. Analogue realizations of fractional-order controllers. Nonlinear Dynamics 29, 281-296. es_ES
dc.description.references Rao, V. G., Bernstein, D. S., 2001. Naive control of the double integrator. IEEE Control Systems Magazine October, 86-97. es_ES
dc.description.references Sierociuk, D., 2003. Fractional states-space toolkit (FSST). URL: http://www.ee.pw.edu.pl/ dsieroci/fsst/fsst.htm es_ES
dc.description.references Stein, G., Athans, M., 1987. The LQR/LTR procedure for multivariable feedback control design. IEEE Transactions on Automatic Control 32, 105-114. es_ES
dc.description.references Tenreiro Machado, J. A., 2011. Communications in nonlinear science and numerical simulation. Root locus of fractional linear systems 16 (10), 3855-3862. es_ES
dc.description.references Tepljakov, A., 2015. FOMCON toolbox reference manual. URL: http://docs.fomcon.net/ es_ES
dc.description.references Tepljakov, A., 2016. FOMCON: Fractional-order modeling and control. (Fecha de consulta: 21/03/16). URL: http://fomcon.net/ es_ES
dc.description.references Tejado, I., HosseinNia, S. H., Vinagre, B. M., 2014. Adaptive gain-order fractional control for network-based applications. Fractional Calculus and Applied Analysis 17 (2), 462-482. es_ES
dc.description.references Tricaud, C., 2008. Solution of fractional optimal control problems. URL: http://www.mathworks.com/matlabcentral/fileexchange/22196- solution-of-fractional-optimal-control-problems es_ES
dc.description.references Tustin, A., Allanson, J. T., Layton, J. M., Jakeways, R. J., 1958. The design of systems for automatic control of the position of massive objects. The Proceedings of the Institution of Electrical Engineers 105. es_ES
dc.description.references Valerio, D., 2005a. Ninteger: Fractional control toolbox for MatLab. URL: http://www.mathworks.com/matlabcentral/fileexchange/8312- ninteger es_ES
dc.description.references Valerio, D., 2005b. Ninteger: Fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm es_ES
dc.description.references Valerio, D., 2005c. Ninteger v. 2.3 - fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/Manual.pdf es_ES
dc.description.references Vilanova, R., Visioli, A., (Eds.), 2012. PID Control in the Third Millennium. Springer, London. es_ES
dc.description.references Vinagre, B. M., Monje, C. A., 2006. Introduccion al control fraccionario. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem