- -

Sensibilidad paramétrica de un automóvil con polinomios de caos

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Sensibilidad paramétrica de un automóvil con polinomios de caos

Show full item record

Haro, E.; Acebedo, M.; Velázquez, R. (2015). Sensibilidad paramétrica de un automóvil con polinomios de caos. Revista Iberoamericana de Automática e Informática industrial. 12(3):253-259. https://doi.org/10.1016/j.riai.2015.04.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143645

Files in this item

Item Metadata

Title: Sensibilidad paramétrica de un automóvil con polinomios de caos
Secondary Title: Vehicle parameter sensitivity with polynomial chaos
Author: Haro, Eduardo Acebedo, Mario Velázquez, Ramiro
Issued date:
Abstract:
[ES] Es de gran interés analizar la sensibilidad de los parámetros de modelos matemáticos que describen sistemas físicos, y merece una atención particular estudiar esta sensibilidad en modelos con incertidumbre en el valor ...[+]


[EN] It is interesting to analyze the parameter sensitivity of mathematical models that describe physical systems, and it deserves particular attention the sensitivity study of models with uncertainty in the parameter ...[+]
Subjects: Sensitivity , Uncertain dynamic systems , Polynomial chaos , Vehicle dynamics , Sensibilidad , Sistemas dinámicos inciertos , Polinomios de caos , Dinámica de vehículo
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.04.001
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2015.04.001
Type: Artículo

References

Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008

Cukier, R. ., Levine, H. ., & Shuler, K. . (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26(1), 1-42. doi:10.1016/0021-9991(78)90097-9

Field, R., 2002. Numerical methods to estimate the coefficients of the polynomial chaos expansion. En: 15th ASCE Engineering Mechanics Conference. [+]
Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008

Cukier, R. ., Levine, H. ., & Shuler, K. . (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26(1), 1-42. doi:10.1016/0021-9991(78)90097-9

Field, R., 2002. Numerical methods to estimate the coefficients of the polynomial chaos expansion. En: 15th ASCE Engineering Mechanics Conference.

Ghanem, R., & Red-Horse, J. (1999). Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Physica D: Nonlinear Phenomena, 133(1-4), 137-144. doi:10.1016/s0167-2789(99)00102-5

Sandoval, E. H. (2008). Estimación de los parámetros físicos de un automóvil. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(4), 28-35. doi:10.1016/s1697-7912(08)70174-2

Haro Sandoval, E., Anstett-Collin, F., & Basset, M. (2012). Sensitivity study of dynamic systems using polynomial chaos. Reliability Engineering & System Safety, 104, 15-26. doi:10.1016/j.ress.2012.04.001

Homma, T., & Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1), 1-17. doi:10.1016/0951-8320(96)00002-6

Jacques, J., Lavergne, C., & Devictor, N. (2006). Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliability Engineering & System Safety, 91(10-11), 1126-1134. doi:10.1016/j.ress.2005.11.047

Mara, T. A., & Tarantola, S. (2008). Application of global sensitivity analysis of model output to building thermal simulations. Building Simulation, 1(4), 290-302. doi:10.1007/s12273-008-8129-5

McKay, M. D., Morrison, J. D., & Upton, S. C. (1999). Evaluating prediction uncertainty in simulation models. Computer Physics Communications, 117(1-2), 44-51. doi:10.1016/s0010-4655(98)00155-6

Saltelli, A., Tarantola, S., & Chan, K. P.-S. (1999). A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics, 41(1), 39-56. doi:10.1080/00401706.1999.10485594

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964-979. doi:10.1016/j.ress.2007.04.002

Turyani, T., Rabitz, H., 2000. Local methods in sensitivity analysis. A. Saltelli, K. Chan, E. M. Scott, John Wiley and Sons, Chichester.

Wiener, N. (1938). The Homogeneous Chaos. American Journal of Mathematics, 60(4), 897. doi:10.2307/2371268

Witteveen, J., Bijl, H., 2006. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. En: 44th AIAA Aerospace Sciences Meeting and Exhibit.

Xiu, D., & Karniadakis, G. E. (2003). Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1), 137-167. doi:10.1016/s0021-9991(03)00092-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record