Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008
Cukier, R. ., Levine, H. ., & Shuler, K. . (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26(1), 1-42. doi:10.1016/0021-9991(78)90097-9
Field, R., 2002. Numerical methods to estimate the coefficients of the polynomial chaos expansion. En: 15th ASCE Engineering Mechanics Conference.
[+]
Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008
Cukier, R. ., Levine, H. ., & Shuler, K. . (1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26(1), 1-42. doi:10.1016/0021-9991(78)90097-9
Field, R., 2002. Numerical methods to estimate the coefficients of the polynomial chaos expansion. En: 15th ASCE Engineering Mechanics Conference.
Ghanem, R., & Red-Horse, J. (1999). Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Physica D: Nonlinear Phenomena, 133(1-4), 137-144. doi:10.1016/s0167-2789(99)00102-5
Sandoval, E. H. (2008). Estimación de los parámetros físicos de un automóvil. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(4), 28-35. doi:10.1016/s1697-7912(08)70174-2
Haro Sandoval, E., Anstett-Collin, F., & Basset, M. (2012). Sensitivity study of dynamic systems using polynomial chaos. Reliability Engineering & System Safety, 104, 15-26. doi:10.1016/j.ress.2012.04.001
Homma, T., & Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1), 1-17. doi:10.1016/0951-8320(96)00002-6
Jacques, J., Lavergne, C., & Devictor, N. (2006). Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliability Engineering & System Safety, 91(10-11), 1126-1134. doi:10.1016/j.ress.2005.11.047
Mara, T. A., & Tarantola, S. (2008). Application of global sensitivity analysis of model output to building thermal simulations. Building Simulation, 1(4), 290-302. doi:10.1007/s12273-008-8129-5
McKay, M. D., Morrison, J. D., & Upton, S. C. (1999). Evaluating prediction uncertainty in simulation models. Computer Physics Communications, 117(1-2), 44-51. doi:10.1016/s0010-4655(98)00155-6
Saltelli, A., Tarantola, S., & Chan, K. P.-S. (1999). A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics, 41(1), 39-56. doi:10.1080/00401706.1999.10485594
Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964-979. doi:10.1016/j.ress.2007.04.002
Turyani, T., Rabitz, H., 2000. Local methods in sensitivity analysis. A. Saltelli, K. Chan, E. M. Scott, John Wiley and Sons, Chichester.
Wiener, N. (1938). The Homogeneous Chaos. American Journal of Mathematics, 60(4), 897. doi:10.2307/2371268
Witteveen, J., Bijl, H., 2006. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos. En: 44th AIAA Aerospace Sciences Meeting and Exhibit.
Xiu, D., & Karniadakis, G. E. (2003). Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1), 137-167. doi:10.1016/s0021-9991(03)00092-5
[-]