Mostrar el registro sencillo del ítem
dc.contributor.author | Lozoya Santos, Jorge de J. | es_ES |
dc.contributor.author | Hernández Alcántara, Diana | es_ES |
dc.contributor.author | Morales Menéndez, Rubén | es_ES |
dc.contributor.author | Ramírez Mendoza, Ricardo A. | es_ES |
dc.date.accessioned | 2020-05-19T06:42:13Z | |
dc.date.available | 2020-05-19T06:42:13Z | |
dc.date.issued | 2015-07-10 | es_ES |
dc.identifier.issn | 1697-7912 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143646 | |
dc.description.abstract | [ES] Una metodología para modelar amortiguadores guiada por sus diagramas característicos es presentada y validada. Los diagramas característicos del amortiguador son construidos a partir de datos experimentales generados por pruebas estándar: fuerza versus desplazamiento y velocidad versus aceleración. Estos son explorados en las frecuencias de interés. Los diagramas son clasificados en siete patrones, los cuales sirven de guía para construir el modelo matemático el cual puede identificarse con algoritmos convencionales. La metodología es validada con cuatro amortiguadores comerciales de diferentes tecnologías, obteniendo resultados con errores de estimación menores al 5%. | es_ES |
dc.description.abstract | [EN] A methodology for modeling guided by its characteristic damping diagrams is proposed. From experimental data generated by standard tests the damper characteristic diagrams are constructed, which considers the force versus displacement, velocity and acceleration for the frequencies of interest. These characteristic diagrams can be classified into seven patterns, which serve as a guide to build the same mathematical model that can be identified with algorithms conventional. The methodology was validated with four different technologies of commercial dampers. The precision of the results presented errors less than 5%. | es_ES |
dc.description.sponsorship | Agradecemos el apoyo del Tecnológico de Monterrey vía la Cátedra de Autotrónica y al CONACyT vía los proyectos PCP 05/13 y Bilateral México-Españaa # 142183. | |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Semi-active damper | es_ES |
dc.subject | Passive damper | es_ES |
dc.subject | Modeling methodology simulation | es_ES |
dc.subject | Amortiguador semi-activo | es_ES |
dc.subject | Amortiguador pasivo | es_ES |
dc.subject | Modelado | es_ES |
dc.subject | Metodología | es_ES |
dc.subject | Simulación | es_ES |
dc.title | Modelado de Amortiguadores guiado por sus Diagramas Característicos | es_ES |
dc.title.alternative | Modeling of Dampers guided by their Characteristic Diagrams | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2015.05.001 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ITESM//PCP05%2F13/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ITESM//# 142183/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Lozoya Santos, JDJ.; Hernández Alcántara, D.; Morales Menéndez, R.; Ramírez Mendoza, RA. (2015). Modelado de Amortiguadores guiado por sus Diagramas Característicos. Revista Iberoamericana de Automática e Informática industrial. 12(3):282-291. https://doi.org/10.1016/j.riai.2015.05.001 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2015.05.001 | es_ES |
dc.description.upvformatpinicio | 282 | es_ES |
dc.description.upvformatpfin | 291 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | es_ES |
dc.relation.pasarela | OJS\9362 | es_ES |
dc.contributor.funder | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | |
dc.description.references | BASSO, R. (1998). Experimental Characterization of Damping Force in Shock Absorbers with Constant Velocity Excitation. Vehicle System Dynamics, 30(6), 431-442. doi:10.1080/00423119808969459 | es_ES |
dc.description.references | Boggs, C.M., 2009. The Use of Simulation to Expedite Experimental Investigations of the Effect of High-Performance Shock Absorbers. Ph.D. thesis, Virginia Polytechnic Institute and State University. | es_ES |
dc.description.references | Calvo, J. A., López-Boada, B., Román, J. L. S., & Gauchía, A. (2009). Influence of a shock absorber model on vehicle dynamic simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(2), 189-203. doi:10.1243/09544070jauto990 | es_ES |
dc.description.references | Akutain, X. C., Vinolas, J., Savall, J., & Biera, J. (2006). A parametric damper model validated on a track. International Journal of Heavy Vehicle Systems, 13(3), 145. doi:10.1504/ijhvs.2006.010015 | es_ES |
dc.description.references | Çeşmeci, Ş., & Engin, T. (2010). Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences, 52(8), 1036-1046. doi:10.1016/j.ijmecsci.2010.04.007 | es_ES |
dc.description.references | CHOI, S.-B., LEE, S.-K., & PARK, Y.-P. (2001). A HYSTERESIS MODEL FOR THE FIELD-DEPENDENT DAMPING FORCE OF A MAGNETORHEOLOGICAL DAMPER. Journal of Sound and Vibration, 245(2), 375-383. doi:10.1006/jsvi.2000.3539 | es_ES |
dc.description.references | Codeca, F., S.M. Savaresi, Spelta, C., Montiglio, M., Leluzzi, M., 2008. Identification of An Electro-Hydraulic Controllable Shock Absorber Using Black-Block Non-Linear Models. In: 17th IEEE Int Conf on Control Applications Part of IEEE Multi-conf on Syst and Control, USA. pp. 462-467. | es_ES |
dc.description.references | Coleman, T. F., & Li, Y. (1996). An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6(2), 418-445. doi:10.1137/0806023 | es_ES |
dc.description.references | Duym, S., 1997. An Alternative Force State Map for Shock Absorbers. IMechE Proc Instn Mech Engrs Part D 211, 175-179. | es_ES |
dc.description.references | Duym, S. W. R. (2000). Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics. Vehicle System Dynamics, 33(4), 261-285. doi:10.1076/0042-3114(200004)33:4;1-u;ft261 | es_ES |
dc.description.references | Heo, S.-J., Park, K., & Son, S.-H. (2003). Modelling of continuously variable damper for design of semi-active suspension systems. International Journal of Vehicle Design, 31(1), 41. doi:10.1504/ijvd.2003.002046 | es_ES |
dc.description.references | Joarder, M.N., 2003. Influence of Nonlinear Asymmetric Suspension Properties on the Ride Characteristics of Road Vehicle. Master's thesis, Concordia University, Canada. | es_ES |
dc.description.references | Rakheja, S., & Sankar, S. (1985). Vibration and Shock Isolation Performance of a Semi-Active «On-Off» Damper. Journal of Vibration and Acoustics, 107(4), 398-403. doi:10.1115/1.3269279 | es_ES |
dc.description.references | Savaresi, S., Bittanti, S., Montiglio, M., 1 2005b. Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control. Automatica, 41 (1), 113-127. | es_ES |
dc.description.references | Savaresi, S., Silani, E., Bittanti, S., Porciani, N., 2003. On Performance Evaluation Methods and Control Strategies for Semi-Active Suspension Systems. In: The 42nd IEEE Conf on Decision and Control. USA, pp. 2264-2269. | es_ES |
dc.description.references | Savaresi, S., Spelta, C., July 2007. Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension. J. Dyn. Sys., Meas., Control 129 (4), 382-392. | es_ES |
dc.description.references | Sims, N. D., Holmes, N. J., & Stanway, R. (2003). A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers. Smart Materials and Structures, 13(1), 100-121. doi:10.1088/0964-1726/13/1/012 | es_ES |
dc.description.references | Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal), 1908(133), 97-102. doi:10.1515/crll.1908.133.97 | es_ES |
dc.description.references | Wang, L. X., & Kamath, H. (2006). Modelling hysteretic behaviour in magnetorheological fluids and dampers using phase-transition theory. Smart Materials and Structures, 15(6), 1725-1733. doi:10.1088/0964-1726/15/6/027 | es_ES |
dc.description.references | Warner, B., 1996. An Analytical and Experimental Investigation of High Performance Suspension Dampers. Ph.D. thesis, Concordia University, Canada. | es_ES |
dc.description.references | Wright, M.H., 1995. Direct Search Methods: Once Scorned, Now Respectable. In: Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis. | es_ES |
dc.description.references | Yonaba, H., Anctil, F., & Fortin, V. (2010). Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting. Journal of Hydrologic Engineering, 15(4), 275-283. doi:10.1061/(asce)he.1943-5584.0000188 | es_ES |